Paper Units	Course Content Semester-1	Nos. Of Total Lecture in hour	July,2018 to September, 18 10 Weeks		October,2018toDecember, 186			
	Mathematical Physics		10 W	eeks				
PHSACOR01T	Calculus:	7	7					
Т	Recapitulation: Limits, continuity, average							
	and instantaneous quantities,							
	differentiation. Plotting functions. Intuitive							
	ideas of continuous, differentiable, etc.							
	functions and plotting of curves.							
	Approximation: Taylor and binomial series							
	(statements only). Convergence condition						ы	
	of Taylor series and corresponding tests.						ND	
	First Order and Second Order Differential		0				END SEMESTER UNIVERSITY EXAM	
	equations: First Order Differential	8	8				AE.	
	Equations and Integrating Factor.			IN		PE	STI	
	Homogeneous and Inhomogeneous			[E]		RI	R	
	Equations with constant coefficients,			INTERNAL ASSESSMENT		PERIODICAL	UN	
	particular integral. Wronskian and general			AL		IC.	VIV	
	solution. Statement of existence and			AS			ER	
	Uniqueness Theorem for Initial Value			SE		EXAMINATION	SI	
	Problems. Particular Integral.			SS		A	ГҮ	
	Calculus of functions of more than one			MH		MID	EX	
	variable: Partial derivatives, exact and	5	5	EN,		NA	AN	
	inexact differentials. Integrating factor,			Г		TIC		
	with simple illustration. Constrained					NC	IA	
	Maximization using Lagrange Multipliers.						IINATION	
	Vector Calculus:							
	Recapitulation of vectors: Properties of							
	vectors under rotations. Scalar product	5	5					
	and its invariance under rotations. Vector							
	product, Scalar triple product and their							
	interpretation in terms of area and volume							
	respectively. Scalar and Vector fields.							

Paper Units	Course Content	Nos. Of Lecture in hour	July,2018 to September, 18 10 Weeks		October,2018 to December , 18 6 Weeks		0
PHSACOR01T	VectorDifferentiation:Directionalderivativesand normalderivative.Gradientofascalarfieldanditsgeometrical interpretation. Divergence andcurl ofavectorfield. DelandLaplacianoperators.VectoridentitiesusingKroneckerdelta and Levi-civitasymbols.	8	5		3		END SEME
	Vectors. Multiple integrals, Jacobian. Notion of infinitesimal line, surface and volume elements. Line, surface and volume integrals of Vector fields. Flux of a vector field. Gauss' divergence theorem, Green's and Stokes Theorems and their applications (no rigorous proofs).	10		INTERNAL ASSESSMENT	10	PERIODICAL EXAMINATION	END SEMESTER UNIVERSITY EXAMINATION
	Orthogonal Curvilinear Coordinates. Derivation of Gradient, Divergence, Curl and Laplacian in Cartesian, Spherical and Cylindrical Coordinate Systems.	7		ENT	7	NATION	XAMINATION
	Introduction to probability: Independent random variables: Probability distribution functions; binomial, Gaussian, and Poisson, with examples. Mean and variance. Page Dependent events: Conditional Probability. Bayes' Theorem.	10	8		2		
Paper Units	Course Content Semester-1	Nos. Of Lecture in hour	July ,18 to 18		October,2018 to Dec 18 6 Weeks 8		December,
PHSACOF 02T	Mechanics		10 0	YCCAS			

	Fundamentals of Dynamics:						
	Reference frames. Inertial frames; Review	5	5				
	of Newton's Laws of Motion. Galilean						
	transformations; Galilean invariance.						
	Momentum of variable- mass system:						
	motion of rocket. Dynamics of a system of						
	particles. Centre of Mass. Principle of						
	conservation of momentum. Impulse.						
	Work and Energy:	4	4				
	Work and Kinetic Energy Theorem.	-	-				
	Conservative and non- conservative forces.						
	Potential Energy. Qualitative study of one						
	dimensional motion from potential energy						
	curves. Stable and unstable equilibrium.						
	Elastic potential energy. Force as gradient						
	of potential energy. Work & Potential						
	energy. Work done by nonconservative						
	forces. Law of conservation of Energy						
	Collisions:						H
	Elastic and inelastic collisions between	3	3				INE
	particles. Centre of Mass and Laboratory						S C
	frames.						ΕN
	Rotational Dynamics:						END SEMESTER UN
	Angular momentum of a particle and	10	5	INTERNA	5	PE	STE
	system of particles. Torque. Principle of		-	ſEI		RIO	ER
	conservation of angular momentum.			RN		PERIODI	UN
	Rotation about a fixed axis. Moment of			AL		IC/	
	Inertia. Perpendicular axes theorem and					AL	VERSITY EXAMINATION
	parallel axes theorem and their			ASSESSMENT		ΕX	SI
	applications in calculations of moment of			SS		KAI	ГҮ
	inertia for rectangular, cylindrical and			MH		MIN	EX
	spherical bodies. Kinetic energy of			Ŋ		٧A	AN
	rotation. Motion involving both translation			T		EXAMINATION	AII V
	and rotation.					NC	ΝA'
	Elasticity:						TIC
	Relation between Elastic constants.	6	6				NC
	Twisting torque on a Cylinder or Wire.						
	Bending of a beam – internal bending						
	moment						
	flow, Reynolds's number. Poiseuille's						
	Equation for Flow of a viscous Liquid						
	through a Capillary Tube.						
Departm	ent of Physics Gravitation and Central Force Motion:					Page 3 o	f 10
	Law of gravitation. Gravitational potential						
	energy. Inertial and gravitational mass.	9					
	Potential and field due to spherical shell						

Paper Units	Course Content Semester-I	Nos. Of Lecture in hour		018 to nber,	October,2018 to December , 18 6 Weeks		
	Fluid Motion:		10 W	eeks			
PHSACOR 02T	Kinematics of Moving Fluids: Equation of	4	4				
021	continuity. Idea of streamline and						
	turbulent						
	Kinematics of Moving Fluids: Equation of						
	continuity. Idea of streamiline and turbulent						
	flow, Reynold's number. Poiseuille's						
	Equation for Flow of a viscous Liquid through	9					
	a Capillary Tube.						
	Gravitation and Central Force Motion:						EN
	Law of gravitation. Gravitational potential					PERIODICAL EXAMINA	
	energy. Inertial and gravitational mass.				4		ND
	Potential and field due to spherical shell and						SE
	solid sphere. Motion of a particle under a		5				ME
	central force field. Two-body problem and its		5	INTERNAL ASSESSMEN			ST
	reduction to one-body problem and its						ER
	solution. The energy equation and energy						U
	diagram. Kepler's Laws. Satellite in circular			AL			VIV
	orbit and applications. Geosynchronous			, ASSE			'ER
	orbits. Weightlessness. Basic idea of global					ΕX	SI
	positioning system (GPS).			SSM		AMI	END SEMESTER UNIVERSITY EXAM
	Oscillations:			ENT			XAM
	SHM: Simple Harmonic Oscillations.					TION	IN
	Differential equation of SHM and its					Z	AT
	solution. Kinetic energy, potential energy,	7	5		2		IINATION
	total energy and their time-average values.						
	Damped oscillation. Forced oscillations:						
	Transient and steady states; Resonances,						
	sharpness of resonance; power dissipation						
	and Quality Factor.						
	Non-Inertial Systems						
	Non-inertial frames and fictitious forces.	4			4		
	Uniformly rotating frame. Laws of Physics in rotating coordinate systems. Centrifugal						
	force. Coriolis force and its applications.						

Paper Units	Special Theory of Relativity: Michelson-Morley Experiment and its outcome. Postulates of Special Theory of Relativity. Lorentz Transformations. Simultaneity and order of events. Lorentz contraction. Time dilation. Relativistic transformation of velocity, frequency and wave number. Relativistic addition of velocities. Relativistic Doppler effect. Course Content Semester-II	8 Nos. Of Lecture in	Januar April'1		8 May,201 4 weeks	9to June,2	2019
Units	Electricity and Magnetism.	hour	14 weeks		4 WCCK5		
PHSACOR 03T	Electric Field and Electric Potential: Electric field: Electric field lines. Electric flux. Gauss' Law with applications to charge distributions with spherical, cylindrical and planar symmetry. Charge density of a point charge – Definition of Dirac delta function. Properties of Dirac delta function. Conservative nature of Electrostatic Field. Electrostatic Potential. Laplace's and Poisson equations. Potential and Electric Field of a dipole. Force and Torque on a dipole. Uniqueness theorem. Method of Images and its application to: (1) Plane Infinite Sheet and (2) Sphere. Electrostatic	15	10	INTERNAL ASSESSMENT	5	PERIODICAL EXAMINATION	END SEMESTER UNIVERSITY EXAMINATION
	energy of a charged sphere. Conductors in an electrostatic Field. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Parallel- plate capacitor. Capacitance of an isolated conductor. Energy stored in Electrostatic						

	field.				
PHSACOR 03T	Dielectric Properties of Matter :				
	Electric Field in matter. Polarization,	8	8		
	Polarization Charges. Electrical				
	Susceptibility and Dielectric Constant.				
	Capacitor (parallel plate, spherical,				
	cylindrical) filled with dielectric.				
	Displacement vector D. Relations between				
	E, P and D. Gauss' Law in dielectrics.				
	Boudary conditions at the interface of two				
	media.				
	Magnetic Field :				
	Magnetic force between current elements				
	and definition of Magnetic Field B. Biot-				
	Savart's Law and its simple applications:	10	10		
	straight wire and circular loop. Current				
	Loop as a Magnetic Dipole and its Dipole				
	Moment (Analogy with Electric Dipole).				
	Ampere's Circuital Law and its application				
	to (1) infinite straight wire, (2) Infinite				
	planar surface current, and (3) Solenoid.				
	Properties of B: curl and divergence Axial				
	vector property of B and its consequences.				
	Vector Potential. Calculation of vector				
	potential and magnetic induction in simple				
	cases – straight wire, magnetic field due to				
	small current-loop. Magnetic Force on (1)				
	point charge (2) current carrying wire (3)				
	between current elements. Torque on a				
	current loop in a uniform Magnetic Field.				

			r	1			1
PHSACOR 03T	Magnetic Properties of MatterMagnetization vector (M). Magnetic Intensity(H).MagneticSusceptibilityandpermeability.Relation between B, H, M.Ferromagnetism.B-H curve and hysteresis.Boundary conditions at the interface of twomedia.	5	5				
	Electromagnetic Induction Faraday's Law. Lenz's Law. Self-Inductance and Mutual Inductance, calculation in simple cases (e.g. circular loops, solenoids). Reciprocity Theorem. Energy stored in a Magnetic Field.	6			6		END SEME
	Electrical Circuits Charge Conservation – equation of continuity. Transients in D.C.:Growth and decay of current, charging and discharging of capacitors in CR, LR & LCR circuits; oscillatory discharge; time constant; time variation of total energy in LCR cicuit. AC Circuits: Kirchhoff's laws for AC circuits. Complex Reactance and Impedance. Phasor diagram. Series LCR Circuit: (1) Resonance, (2) Power Dissipation and (3) Quality Factor, and (4) Band Width. Parallel LCR Circuit Network theorems 6 Lectures Ideal Constant- voltage and Constant-current Sources.	10	10	INTERNAL ASSESSMENT		PERIODICAL EXAMINATION	END SEMESTER UNIVERSITY EXAMINATION
	Network Theorems: Thevenin theorem, Norton theorem, Superposition theorem, Reciprocity theorem, Maximum Power Transfer theorem. Applications to dc circuits.	6	2		4		