

Paper Units	Course Content	Nos. Of Lecture in hour	July,2018 to September, 18 10 Weeks		October,2018 to December, 18 6 Weeks		
	Vector Differentiation: Directional derivatives and normal derivative. Gradient of a scalar field and its geometrical interpretation. Divergence and curl of a vector field. Del and Laplacian operators. Vector identities using Kronecker delta and Levi-civita symbols. Vector Integration: Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Notion of infinitesimal line, surface and volume elements. Line, surface and volume integrals of Vector fields. Flux of a vector field. Gauss' divergence theorem, Green's and Stokes Theorems and their applications (no rigorous proofs). Orthogonal Curvilinear Coordinates. Derivation of Gradient, Divergence, Curl and Laplacian in Cartesian, Spherical and Cylindrical Coordinate Systems. Introduction to probability: Independent random variables: Probability distribution functions; binomial, Gaussian, and Poisson, with examples. Mean and variance. Page Dependent events: Conditional Probability. Bayes' Theorem.	8 10 7 10			3 10 7 2		
Paper Units	Course Content Semester-1	Nos. Of Lecture in hour		to ber,18 eks			cember
$\begin{aligned} & \text { PHSACOH } \\ & \text { 02T } \end{aligned}$	Mechanics						

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Paper Units \& Course Content Semester-I \& Nos. Of Lecture in hour \& \multicolumn{2}{|l|}{\begin{tabular}{l}
July,2018 to \\
September, \\
18 \\
10 Weeks
\end{tabular}} \& \multicolumn{3}{|l|}{\begin{tabular}{l}
October, 2018 to \\
December, 18 \\
6 Weeks
\end{tabular}} \\
\hline PHSACOR
02T \& \begin{tabular}{l}
Fluid Motion: \\
Kinematics of Moving Fluids: Equation of continuity. Idea of streamline and turbulent \\
Kinematics of Moving Fluids: Equation of continuity. Idea of streamiline and turbulent flow, Reynold's number. Poiseuille's Equation for Flow of a viscous Liquid through a Capillary Tube. \\
Gravitation and Central Force Motion: \\
Law of gravitation. Gravitational potential energy. Inertial and gravitational mass. Potential and field due to spherical shell and solid sphere. Motion of a particle under a central force field. Two-body problem and its reduction to one-body problem and its solution. The energy equation and energy diagram. Kepler's Laws. Satellite in circular orbit and applications. Geosynchronous orbits. Weightlessness. Basic idea of global positioning system (GPS). \\
Oscillations: \\
SHM: Simple Harmonic Oscillations. Differential equation of SHM and its solution. Kinetic energy, potential energy, total energy and their time-average values. Damped oscillation. Forced oscillations: Transient and steady states; Resonances, sharpness of resonance; power dissipation and Quality Factor. \\
Non-Inertial Systems \\
Non-inertial frames and fictitious forces. Uniformly rotating frame. Laws of Physics in rotating coordinate systems. Centrifugal force. Coriolis force and its applications.
\end{tabular} \& \begin{tabular}{c}
4 \\
\\
9 \\
9 \\
4 \\
7 \\
7 \\
\\
\hline
\end{tabular} \& \begin{tabular}{|c}
5 \\
\\
\\
\\
\\
\\
5
\end{tabular} \& \& 4

2
2

4 \& \& \\
\hline
\end{tabular}

	Special Theory of Relativity: Michelson-Morley Experiment and its outcome. Postulates of Special Theory of Relativity. Lorentz Transformations. Simultaneity and order of events. Lorentz contraction. Time dilation. Relativistic transformation of velocity, frequency and wave number. Relativistic addition of velocities. Relativistic Doppler effect.	8			8		
Paper Units	Course Content Semester-II Electricity and Magnetism.	Nos. Of Lecture in hour					
$\begin{aligned} & \text { PHSACOR } \\ & \text { 03T } \end{aligned}$	Electric Field and Electric Potential: Electric field: Electric field lines. Electric flux. Gauss' Law with applications to charge distributions with spherical, cylindrical and planar symmetry. Charge density of a point charge - Definition of Dirac delta function. Properties of Dirac delta function. Conservative nature of Electrostatic Field. Electrostatic Potential. Laplace's and Poisson equations. Potential and Electric Field of a dipole. Force and Torque on a dipole. Uniqueness theorem. Method of Images and its application to: (1) Plane Infinite Sheet and (2) Sphere. Electrostatic energy of system of charges. Electrostatic energy of a charged sphere. Conductors in an electrostatic Field. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Parallelplate capacitor. Capacitance of an isolated conductor. Energy stored in Electrostatic	15	10		5		

