Paper Units	Course Content Semester-II Waves and Optics Superposition of Collinear Harmonic oscillations Linearity and Superposition Principle. Superposition of two collinear oscillations having (1) equal frequencies and (2) different frequencies (Beats). Superposition of N collinear Harmonic Oscillations with (1) equal phase differences and (2) equal frequency	4	January,19- April'19 14 weeks		May,2019 to June,2019 4 weeks		
PHSACOR 04T			4				
	differences Superposition of two perpendicular Harmonic Oscillations Graphical and Analytical Methods. Lissajous Figures with equal an unequal frequency and	3	3				END SEN
	their uses. Wave Motion : Plane and Spherical Waves. Longitudinal and Transverse Waves. Progressive (Travelling) Wave and its differential equation. phase and group velocities for harmonic waves. Pressure of a Longitudinal Wave. Energy Transport.	4	4	INTERNAL ASSESSMENT		PERIODICAL EXAMINA	END SEMESTER UNIVERSITY EXAN
0 V S	Intensity of Wave. Water Waves: Ripple and Gravity Waves Velocity of Waves : Velocity of Transverse Vibrations of Stretched Strings. Velocity of Longitudinal Waves in a Fluid in a Pipe. Newton's Formula	5	5			XAMINATION	ITY EXAMINATION
	for Velocity of Sound. Laplace's Correction. Superposition of Two Harmonic Waves : Standing (Stationary) Waves in a String: Fixed and Free Ends. Analytical Treatment. Changes of wavefunction with respect to Position and Time. Energy of Vibrating String.	7			7		NC
	Transfer of Energy. Normal Modes of Stretched Strings. Longitudinal Standing Waves and Normal Modes. Open and Closed Pipes. Superposition of N Harmonic Waves.						

ACADEMIC CALENDER FOR NEWLY INTRODUCED CBCS IN PHYSICS HONORS SESSION 2018-2019

Wave Optics :	4	4		
Electromagnetic nature of light. Definition				
and properties of wave front. Huygens				
Principle. Temporal and Spatial Coherence.				
Characteristics of Laser light.				
Interference:				
Division of amplitude and wavefront. Young's				
double slit experiment. Lloyd's Mirror and	9	9		
Fresnel's Biprism. Phase change on reflection:				
Stokes' treatment. Interference in Thin Films:				
parallel and wedge-shaped films. Fringes of				
equal inclination (Haidinger Fringes); Fringes				
of equal thickness (Fizeau Fringes). Newton's				
Rings: Measurement of wavelength and				
refractive index.				
Interferometer :	4	4		
Michelson Interferometer-(1) Idea of form of				
fringes (No theory required), (2)				
Determination of Wavelength, (3) Wavelength				
Difference, (4) Refractive Index, and (5)				
Visibility of Fringes. Fabry-Perot				
interferometer.				
Diffraction and Holography :				
Kirchhoff's Integral Theorem and Fresnel-	8	8		
Kirchhoff's Integral formula (Qualitative	0	0		
discussion only). Fraunhofer diffraction: Single				
slit, rectangular aperture. Resolving Power of				
an optical instrument – Rayleigh's criteria.				
Double slit. Multiple slits. Diffraction grating.				
Resolving power of grating.				
Fresnel Diffraction: Fresnel's Assumptions.				
Fresnel's Half-Period Zones for Plane Wave.	8	4	4	
Explanation of Rectilinear Propagation of				
Light. Theory of a Zone Plate: Multiple Foci of a				
Zone Plate. Fresnel's Integral, Fresnel				
diffraction pattern of a straight edge, a slit and				
a wire.				
Holography: Principle of Holography.	4		4	
Recording and Reconstruction Method. Theory	4		4	
of Holography as Interference between two				
Plane Waves. Point source holograms.				