Paper	Course Content	Nos. Of	July	y,19-	Octo	ober,2019 to Decemb	er,2019	
Units	Semester-III	Lecture in	Sep	tember'19	6we	eeks		
	Mathematical Physics II	hour	10	weeks				
	Fourier Series :			Ι		Р	Е	
PHSACOR	Periodic functions. Orthogonality of sine			Ν		Е	N	
05T	and cosine functions, Dirichlet Conditions (Statement only). Expansion of periodic			Т		R	D	
	functions in a series of sine and cosine functions and determination of Fourier	10	10	Е		Ι	S	
	coefficients. Euler relation Complex representation of Fourier series. Expansion			R		O D	E M	
	of functions with arbitrary period. Expansion of non-periodic functions over			A		I	E	
	an interval. Even and odd functions and their Fourier expansions. Application.			L		С	S	E
	Summing of Infinite Series. Term-by-Term differentiation and integration of Fourier					А	Т	Х
	Series. Parseval Identity.			А		L	Е	А
	Frobenius Method and Special Functions:			S			R	М
	Singular Points of Second Order Linear			S		Е		Ι
	Differential Equations and their importance.			Е		Х	U	Ν
	Frobenius method and its applications to differential equations. Legendre, Bessel,	25	15	S	10	А	N	А
	Hermite and Laguerre Differential Equations. Properties of Legendre			М		М	Ι	Т
	Polynomials: Rodrigues Formula,			E		Ι	V	Ι
	Generating Function, Orthogonality. Simple recurrence relations. Expansion of function			N		Ν	Е	0
	in a series of Legendre Polynomials. Multipole expansion in Electrostatics.			Т		A	R	N
	Orthonormality of Hermite and Laguerre polynomials (statements only). Bessel					T	S I	
	Functions of the First Kind: Generating					0	T	
	Function, simple recurrence relations. Zeros of Bessel Functions (Jo(x) and J1(x))and					N	Y	
	Orthogonality. Airy's disc for Fraunhofer							

ACADEMIC CALENDER FOR NEWLY INTRODUCED CBCS IN PHYSICS HONORS SESSION 2019-2020

diffraction through circular aperture,				
resolving power of a telesco				
Some Special Integrals:				
Beta and Gamma Functions and Relation				
between them. Expression of Integrals in	4		4	
terms of Gamma Functions. Error Function				
(Probability Integral).				
(Probability integral).				
Variational calculus in physics:				
Idea of functionals. Euler-Lagrange				
equation from calculus of variation. Idea of	5	5		
constraints (holonomic only), degrees of				
freedom and generalised co-ordinates.				
Hamilton's principle and Lagrange's				
equation from it.				
Analytical Dynamics:				
Applications of Lagrange's equation in				
simple problems. Canonically cojugate	10	8	2	
momentum. Idea of cyclic coordinate and				
conservation principles from different				
symmetries. Idea of Legendre				
transformation. Its application in mechanics				
and thermodynamics. Definition of				
Hamiltonian. Page Canonical equations of				
motion. Poisson bracket and its properties.				
Time variation of a dynamical variable in				
terms of in terms of Poisson bracket and the				
condition related to the constants of				
motion.				
Partial Differential Equations :	6		6	
Solutions to partial differential equations,				
using separation of variables: Laplace's				
Equation in problems of rectangular				
for vibrational modes of a stretched string.				
symmetry. Wave equation and its solution for vibrational modes of a stretched string.				

Paper	Course Content	Nos. Of	July	,19-	October,2019 to December,2019			
Units	Semester-III	Lecture in	September'19		6weeks			
	Thermal Physics	hour	10 weeks					
	Introduction to Thermodynamics :			Ι		Р	Е	
PHSACOR	Zeroth and First Law of Thermodynamics:			N		Е	N	
0 (m	Extensive and intensive Thermodynamic			m			5	
06T	Variables, Thermodynamic Equilibrium,			Т		R	D	
	Zeroth Law of Thermodynamics & Concept of	8	8	Е		Ι	S	
	Temperature, Concept of Work & Heat, State			R		0	Е	
	Functions, First Law of Thermodynamics and its differential form, Internal Energy, First			ĸ		0	Е	
	Law & various processes, Applications of First			Ν		D	М	
	Law: General Relation between CP and CV,			А		I	Е	
	Work Done during Isothermal and Adiabatic			11		1		
	Processes, Compressibility and Expansion Co-			L		С	S	
	efficient.					А	Т	
	Second Law of Thermodynamics: Reversible						Е	
	and Irreversible process with examples.	7	7	А		L	_	
	Conversion of Work into Heat and Heat into			S			R	
	Work. Heat Engines. Carnot's Cycle, Carnot							
	engine & efficiency. Refrigerator & coefficient			S		E	TT	
	of performance, 2nd Law of Thermodynamics:			Е		х	U	
	Kelvin-Planck and Clausius Statements and			C			Ν	
	their Equivalence.			S		А	I	
	Carnot's Theorem. Applications of Second	2	2	М		М	1	
	Law of Thermodynamics: Thermodynamic			Е		I	V	
	Scale of Temperature and its Equivalence to			L		1	Е	
	Perfect Gas Scale.			Ν		Ν		
	Entropy: Concept of Entropy, Clausius			Т		А	R	
	Theorem. Clausius Inequality, Second Law of						S	
	Thermodynamics in terms of Entropy.	8	8			Т	Ţ	
	Entropy of a perfect gas. Principle of Increase					Ι	I	
	of Entropy. Entropy Changes in Reversible and						Т	
	Irreversible processes with examples. Entropy of the Universe. Entropy Changes in					0	Y	
	Reversible and Irreversible Processes.					Ν	1	
	Principle of Increase of Entropy.							
	Temperature–Entropy diagrams for Cycle.							

Third Law of Thermodynamics.					
Unattainability of Absolute Zero.					
Thermodynamic Potentials :					
Thermodynamic Potentials: Internal Energy,					
Enthalpy, Helmholtz Free Energy, Gibb's Free					
Energy. Their Definitions, Properties and	8	5	3		
Applications. Surface Films and Variation of					
Surface Tension with Temperature. Magnetic					
Work, Cooling due to adiabatic					
demagnetization (basic principle only), First					
and second order Phase Transitions with					
examples, Clausius Clapeyron Equation and					
Ehrenfest equations					
Derivations and applications of Maxwell's					
Relations, Maxwell's Relations:(1) Clausius					
Clapeyron equation, (2) Values of Cp-Cv, (3) TdS					
Equations, (4) Joule-Kelvin coefficient for Ideal	7		7		
and Van der Waal Gases, (5) Energy equations,	, 		,		
(6) Change of Temperature during Adiabatic					
Process.					
Kinetic Theory of Gases :					
Distribution of Velocities: Maxwell-Boltzmann					
Law of Distribution of Velocities in an Ideal Gas	7	7			
and its Experimental Verification. Doppler					
Broadening of Spectral Lines and Stern's					
Experiment. Mean, RMS and Most Probable					
Speeds. Degrees of Freedom. Law of					
Equipartition of Energy (No proof required).					
Specific heats of Gases.					
Molecular Collisions: Mean Free Path. Collision					
Probability. Estimates of Mean Free Path.	5		5		
Transport Phenomenon in Ideal Gases: (1)			_		
Viscosity, (2) Thermal Conductivity and (3)					
	1			1	1
Diffusion. Brownian Motion and its Significance.					
Diffusion. Brownian Motion and its Significance.					
Diffusion. Brownian Motion and its Significance. Real Gases: Behavior of Real Gases: Deviations	8		8		
Diffusion. Brownian Motion and its Significance.	8		8		

ACADEMIC CALENDER FOR NEWLY INTRODUCED CBCS IN PHYSICS HONORS SESSION 2019-2020 2019

Gaseous State. Vapour and Gas. Boyle		
Temperature. Van der Waal's Equation of State		
for Real Gases. Values of Critical Constants. Law		
of Corresponding States. Comparison with		
Experimental Curves. P-V Diagrams. Joule's		
Experiment. Free Adiabatic Expansion of a		
Perfect Gas. Joule-Thomson Porous Plug		
Experiment. Joule- Thomson Effect for Real and		
Van der Waal Gases. Temperature of Inversion.		
Joule- Thomson Cooling.		

ACADEMIC CALENDER FOR NEWLY INTRODUCED CBCS IN PHYSICS HONORS SESSION 2019-2020

Paper	Course Content	Nos. Of	July	7,19-	00	tober,2019 to Decem	ber,2019			
Units	Semester-III	Lecture	are September'19			6weeks				
		hour	10	weeks						
PHSACOR	Digital System and Application:			Ι		Р	E			
07T	Introduction :			N		E	N			
	Electronic Components and Measuring devices			Т		R	D			
	(which are generally used for studying the following circuits) and their general	4	4	Е		Ι	S			
	Characteristics, Cathode-Ray Oscilloscope (CRO), Block diagram of CRO. Electron Gun. Deflection			R		0	Е			
	System and Time Base. Deflection Sensitivity.			Ν		D	М			
	Applications of CRO:1)Study of waveform, 2)Measurement of Voltage , Current, Frequency			А		Ι	E			
	and Phase difference.			L		С	S	Е		
	Integrated Circuits :					А	Т	Х		
	Active & Passive components. Discrete components. Wafer. Chip. Advantages and	-	5	А		L	А	А		
	drawbacks of ICs. Scale of integration: SSI, MSI,			S			R	М		
	LSI and VLSI (basic idea and definitions only). Classification of ICs. Examples of Linear and			S		Е		Ι		
	Digital ICs.			Ε		Х	U	N		
	Digital Circuits:			S		А	Ν	А		
	Difference between Analog and Digital Circuits. Binary Numbers. Decimal to Binary and Binary to		16	М		М	Ι	Т		
	Decimal Conversion. BCD, Octal and Hexadecimal			Е		Ι	V	Ι		
	numbers. De Morgan's Theorems. Boolean Laws. AND, OR and NOT Gates (realization using Diodes			Ν		Ν	Е	0		
	and Transistor). Simplification of Logic Circuit using Boolean Algebra. NAND and NOR Gates as			Т		А	R	N		
	Universal Gates. XOR and XNOR Gates and					Т	S			
	application as Parity Checkers. Fundamental Products. Idea of Minterms and Maxterms.					Ι	Ι			
	Conversion of a Truth table into Equivalent Logic Circuit by (1) Sum of Products Method and (2)					0	Т			
	Karnaugh Map.					Ν	Y			

ACADEMIC CALENDER FOR NEWLY INTRODUCED CBCS IN PHYSICS HONORS SESSION 2019-2020

Arithmatic circuits :				
Binary Addition. Binary Subtraction using 2's Complement. Half and Full Adders. Half & Full Subtractors, 4-bit binary Adder/Subtractor.	5	5		
Data processing circuits:				
Basic idea of Multiplexers, De-multiplexers, Decoders, Encoders.	5	5		
Sequential circuits : SR, D, and JK Flip-Flops. Clocked (Level and Edge Triggered) Flip-Flops. Preset and Clear operations. Race- Page around conditions in JK Flip-Flop. M/S JK Flip-Flop. M/S JK Flip-Flop, Combinational logic for the development of sequential circuit.			6	
Timers : IC 555: block diagram and applications: Astable multivibrator and Monostable multivibrator.	4		4	
Registers: Serial-in-Serial-out, Serial-in-Parallel- out, Parallel-in-Serial-out and Parallel-in-Parallel- out Shift Registers (only up to 4 bits).	4	2	2	
Counters (4 bits) : Ring Counter. Asynchronous counters, Decade Counter. Synchronous Counter.	4		4	
Computer Organization : Input/Output Devices. Data storage (idea of RAM and ROM). Computer memory. Memory organization & addressing. Memory Interfacing. Memory Map.			7	