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Group-A 

(Marks: 70) 
 Answer Question No. 1 and any five questions from the rest 
1. Answer any five questions from the following:  3×5 = 15

(a) Correct or justify: If )1,1(−=S  and ∈= nnT |{ ℤ and mnm ≤≤− , for 
some fixed integer }0>m  then TS ∪  is compact. 

(b) If  f : [a, b] → ℝ be continuous in 0)(],,[ >xfba  and 

∫ ≤≤=
x

a

bxadttfxF ,)()( ; then prove that F is strictly increasing in [a , b]. 

 

(c) Show that the arc of the upper half of the cardioide  )cos1( θ−= ar  is 
bisected at  .32πθ =  

(d) Find the radius of convergence of the power series ∑
∞

=

+
2

2

)!2(
)!(

n

nx
n

nx . 

(e) Examine the convergence of  dx
x

x
∫ −

2

0 2
log . 

(f) Show that function |1|)( −= xxf  is a function of bounded variation on 
[0, 2]. 

(g) If ,0,1log
1

>= ∫ xdt
t

x
x

 show that xlog  is strictly increasing on (0, ∞) and 

∞=
∞→

x
x

loglim . 

(h) Show that ∑
∞

= ⋅
+

1
5

3

3
)1(

n
n

n

n
xn is uniformly convergent on [–3, 3]. 

(i) Show that ,
35
6)( 22∫∫ =+

E

dxdyyx where E is the region bounded by 2xy =  

and xy =2 . 
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2.  (a) Prove that a compact subset of ℝ is closed and bounded in ℝ. 4

(b) If →Df : ℝ be a continuous function on a compact subset D of  ℝ then 
prove that )(Df is compact in ℝ.  

4

(c) If 
⎭
⎬
⎫

⎩
⎨
⎧

∈⎟
⎠
⎞

⎜
⎝
⎛ += )1,0(:)1(

2
1,

2
xxxG  then show that G is an open cover of 

(0, 1) but it has no finite sub cover for (0, 1). 

3

  

3.  (a) If →],[: baf ℝ be bounded on [a, b] then prove that f is Riemann 
integrable on [a, b] if and only if for 0>ε , there exists a partition P of 
[a, b] such that ε<− ),(),( fPLfPU . 

4

(b) A function  f  is defined on [0, 1] by 

⎩
⎨
⎧

=
irrationalis,
rationalis,sin

)(
xx
xx

xf  

Evaluate ∫
2

0

π

f  and ∫
2

0

π

f  and hence examine the integrability of  f on [0, 1]. 

4

(c) Prove that ba
a

dx
x
xb

a

<<
+

<
+∫ 0,

1
4

1
cos . 

3

  

4.  (a) Let a be the only point of infinite discontinuity of the functions f and g 
which are both integrable on ],[ ba ε+  for all ε satisfying ab −<< ε0  and 

],(,0)(,0)( baxxgxf ∈∀>> . 

If ,
)(
)(lim l

xg
xf

ax
=

+→
 where l is a non-zero finite number, then prove that 

∫
b

a

dxxf )(  and ∫
b

a

dxxg )(  converge or diverge together. 

4

(b) Find the value of α for which dx
x

xx
∫
∞ −

+0

1

1
logα

 will converge.  4

(c) Using Dirichlet’s test, show that ∑
∞

=1

cos

n n
nx  is a uniformly convergent series 

on any closed interval [a, b] contained in )2,0( π . 

3

  

5.  (a) If for each n ∈ ℕ, →],[: bafn ℝ be a function such that )(xfn′  exists for all 
],[ bax∈ ; nn cf )}({  converges for some ],[ bac∈  and the sequence nnf }{ ′  

converges uniformly then prove that the sequence nnf }{  converges 
uniformly on [a, b]. 

4
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(b) For ∈n  ℕ, 
n

xxnxfn 2
10,4)( 2 <≤=  

 
n

x
n

nxn 1
2
1,44 2 <≤+−=  

 11,0 ≤≤= x
n

 

Examine  if nnf }{  uniformly convergent on [0, 1]? 

3

(c) For each ∈n  ℕ, ]1,0[,
1

)( 24

2

∈
+

= x
xn

xnxfn . Examine uniform convergence 

of  nnf }{ . 

4

  

6.  (a) For each ∈n  ℕ, →Dfn :  ℝ is a continuous function on D ⊂ ℝ. If the series 

∑ nf  is uniformly convergent on D then prove that the sum function is 
continuous on D. 

4

(b) Using Abel’s test show that ∑
∞

=

−

+
−

1

1

)1(
)1(

n
np

nn

xn
x  converges uniformly for all 

0>p  on [0, 1]. 

4

(c) Correct or justify : If  ∑
∞

= 0
||

n
na  is convergent then ∑∫ ∑

∞

=

∞

= +
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

0

1

0 0 1n

n

n

n
n n

adxxa . 
3

  

7.  (a) If ∑
∞

= 0n

n
n xa  is a power series with radius of convergence 1 and ∑

∞

= 0n
na  is 

convergent then prove that n

n
n xa∑

∞

= 0
 is uniformly convergent on [0, 1]. 

5

(b) Show that ∑
∞

=

−
0

2)1(
n

nn x  may be integrated term-by-term from 0 to x, 

11 <<− x  and thus prove that  

)11(
53

tan
53

1 <<−−+−=− xxxxx LL . 

Deduce that  L−+−=
5
1

3
11

4
π . 

4+2

  

8.  (a) If →],[: baf  ℝ be Riemann integrable, then prove that  

∫=
x

a

dttfxF )()(  is of bounded variation over [a, b]. 

3
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(b) A function →]1,0[:f  ℝ is defined by  

 ,sin)(
x

xf π
=  10 ≤< x  

  ,0=        0=x . 

Is the function f  of bounded variation over [0, 1]?  

3

(c) If 2|}|{)( xxf −= π  on ],[ ππ− , obtain the Fourier series of  f.  

Hence deduce that 
6

1 2

1
2

π
=∑

∞

=n n
. 

5

  

9.  (a) State and prove Mean Value Theorem for a real valued function of two 
variables. 

1+3

(b) Find the expansion of )(cos xy in powers of )1( −x and ⎟
⎠
⎞

⎜
⎝
⎛ −

2
πy upto and 

including third degree terms. 

3

(c) Using Lagrange’s method of multipliers, prove that  
2222

33
⎟
⎠
⎞

⎜
⎝
⎛ ++

≥
++ zyxzyx , where 0≥x , 0≥y , 0≥z . 

4

  

10.(a) Evaluate dx
x

axa

∫ +
+

0
21

)1log( , 0>a is a parameter. 3

(b) Change the variables in the integral ∫ ∫
−

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

a xax

xax

dy
x
ydx

2

0

4

2
2

22

2

1  to r and θ , 

where θ2cosrx = , θθ cossinry =  and show that the value of the integral 

is 2

3
8 a⎟
⎠
⎞

⎜
⎝
⎛ +π . 

4

(c) Compute ∫∫∫ −++E zyx
dzdydx

222 )2(
, where E is the sphere 1222 ≤++ zyx . 4

  

 Group-B 
[Marks: 15] 

 Answer any one question from the following 

11.(a) If (X, d) is a metric space show that the function →× XX:ρ  ℝ, defined by 

),(1
),(),(
yxd

yxdyx
+

=ρ , Xyx ∈, , is also a metric on  X. 

5
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(b) Show that every set in a discrete metric space is an open set as well as a 
closed set. 

4

(c) Define (i) a bounded sequence (ii) a Cauchy sequence in a metric space. 
Show that in a metric space a Cauchy sequence is bounded. Does the 
converse hold? Support your answer. 

1+1+3+1

  

12.(a) Let ],[ baC  denote the set of all real valued continuous functions defined on 
the closed interval ],[ ba . Define →× ],[],[: baCbaCd ℝ by

|)(–)(|sup),(
],[

xgxfgfd
bax∈

=  for all  f, g ∈ C [a, b]. 

Show that d is a metric on C [a, b]. 

5

(b) Let (X, d) be a metric space. Show that for any Xyx ∈, , yx ≠  there are 
open balls 1B  and 2B in (X, d) such that 1Bx∈ , 2By∈ , Φ=∩ 21 BB . Also 
show that {x} is closed in {X, d} for any Xx∈ . 

2+2

(c) Show that in a discrete metric space a convergent sequence is eventually 
constant. 

2

(d) Let (X, d) be a metric space and XA⊂ . Show that a point Ap∈  if and 
only if there exists a sequence }{ nx in A which converges to p, ( A  denotes 
the closure of A). 

4

  

 Group-C 
[Marks: 15] 

 Answer any one question from the following. 15×1 = 15

13.(a) If :f G → ₵ is an analytic function defined on a region G in ₵ and if || f  is 
constant on G, then show that  f  is constant on G. 

4

(b) Let }{ nz be a sequence in ℂ. Let nnn yixz +=  for all ∈n ℕ. Then show that 
}{ nz  is a convergent sequence in ℂ if and only if }{ nx  and }{ ny  are 

convergent sequences in ℝ . Furthermore, if  }{ nz  is a convergent sequence 
in ℂ, show that  nnnnnn

yixz
∞→∞→∞→

+= limlimlim . 

4+2

(c) Let ∈ω ℂ. Define :f  ℂ → ℂ by ||)( ω−= zzf . Show that f  is nowhere 
differentiable on ℂ. 

5

  

14.(a) If a function ),(),()( yxivyxuiyxf +=+  is differentiable at a point 

000 yixz +=  then show that ),( yxu and ),( yxv are differentiable at ),( 00 yx  

and at ),( 00 yx , 
y
v

x
u

∂
∂

=
∂
∂  and 

x
v

y
u

∂
∂

−=
∂
∂ .  

Further show that 
x
vi

y
v

y
ui

x
uzf

∂
∂

+
∂
∂

=
∂
∂

−
∂
∂

=′ )( 0 . 

6
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(b) Show that the function  

⎪⎩

⎪
⎨
⎧

=+

≠+
+
+

=+
0;0

0;)(
)( 104

52

iyx

iyx
yx

iyxyx
iyxf  

is not differentiable at the origin even though it satisfies Cauchy-Riemann 
equations there. 

5

(c) Show that yeyxu x cos),( =  is a harmonic function. Determine a conjugate 
harmonic function of u. 

4
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 Group-A 

 Answer any two questions from Question No. 1 to 3 and any one from 
Question No. 4 and 5 

1. Answer any three questions from the following: 5×3 = 15

(a) What is meant by the term ‘statistical regularity’? Explain how the 
frequency definition of the probability of a random event related to the 
concept of statistical regularity. Starting from the frequency definition of 
probability establish the following: 

),()()()( 2121 nn APAPAPAAAP +++=+++ KK  where sAi '  are  mutually 
exclusive random events for .,,2,1 ni K=   

1+1+3

(b) If a die is thrown k times, show that the probability of even number of sixes 

is ( ){ }
2

321 k+ . 

5

(c) Let A, B, C be mutually independent events. Then prove that A and B + C 
are independent and also that A , B , C  are mutually independent. 

5

(d) A missile has probability 
2
1  of destroying it target and probability 

2
1 of 

missing it. Assuming that the missile firings form independent trials, 
determine the least number of missiles that should be fired at a target in 
order to make the probability of destroying the target at least 0.99. 

5

(e) If An be a monotone sequence of random events, then prove that 

).(lim)lim( nnnn
APAP

∞→∞→
=  

5
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2. Answer any three questions from the following: 5×3 = 15

(a) If a Random Variable ),(~ pnBX , prove that ))(1( 11 dp
dnkpp k

kk
μμμ +−= −+ , 

where kμ  is the k-th central  moment. Hence  obtain the mean and variance 
of X. 

5

(b) In the equation ,022 =−+ qxx  q is a random variable uniformly distributed 
over the interval (0, 2). Find the distribution function of the larger root. 

5

(c) The joint density function of the random variables X, Y is given by 
 2y0and31when),3(),( ≤≤≤≤+= xyxKyxf ,  
 = 0,    Otherwise 
Find: (i) )2( <+YXP  (ii) The marginal distribution of X and Y. Investigate 
whether X and Y are independent. 

5

(d) X is a continuous random variable having a probability density function 
(p.d.f) ).(xf X  Let y be a continuously differentiable function of x. Show that 

the p.d.f )(yfY of random variable )(XgY =  is given by 
dy
dxxfyf xy )()( =  

5

(e) If X follows standard normal distribution, show that 2

2
1 X  follows gamma 

distribution with parameter 
2
1 . 

5

  

3. Answer any three questions from the following: 5×3 = 15

(a) A point P is chosen at random on a line segment AB of length 2l. Find the 
expected values of  
(i) PBAP.  (ii) PBAP −  

5

(b) Let (X, Y) be a two-dimensional random variable. Prove that 
)()()]([ 222 YEXEYXE ≤ . Use this result to prove that 11 ≤≤− ρ , where 

ρ  is the correlation coefficient between X and Y. 

5

(c) Define concept of convergence in probability. Let ∞→⎯⎯→⎯ naX pn asin  

and ∞→⎯→⎯ nbY pn asin , then show that ∞→⎯⎯→⎯ nabYX pnn asin . 

5

(d) The random variables X, Y are both standard normal and are mutually 
independent. Find the expectation of max { }|||,| YX . 

5

(e) If Xn be Binomial (n, p) variate, then show that )1(, pq
npq

npX n −=
−  is 

asymptotically Normal (0, 1). 

5

  

4.  (a) Define an unbiased and consistent estimate of a parameter connected with 
the distribution function of a population. Prove that sample mean is always 
unbiased and consistent estimate of the population mean. 

2+4

(b) Find the maximum likelihood estimate of the parameter α of the continuous 
population having the density function 10,)1()( <<+= xxxf αα where 

1−>α . 

6
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(c) What is meant by a statistical hypothesis? 
A drug is given to 10 patients and the increment of blood pressure were 
recorded to be 3, 6, – 2, 4, – 3, 4, 6, 0, 0, 2. Is it reasonable to believe that 
the drug has no effect on change of blood pressure? It may be assumed that 
for 9 degrees of freedom 025.0)262.2( =>tP . 

2+6

  
5.  (a) Obtain a test for null hypothesis 00 : mmH =  against the alternative 

hypothesis 01 : mmH <  for a normal ),( σm  population when σ  is known. 
6

(b) Two random variables X and Y are connected by the relation 
.0543 =++ YX  A sample niyx ii K,2,1),,( =  is taken from the bivariate 

population of ),( YX ; obtain the correlation coefficient of the sample. 

6

(c) What do you mean by confidence interval for a parameter of a distribution? 
Find a confidence interval for mean of normal ),( σm  population when 
(i) σ  is known (ii) σ  is unknown. 

1+4+3

  

 Group-B 
Section-I 

[Marks: 30] 

 Answer any three questions from the following 10×3 = 30

6.  (a) What are the different sources of computational errors in a numerical 
computational work? Discuss with suitable examples. 

2

(b) Find the relative percentage error in )(xf  for ,0=x  if the error in x is 
0.002, where xxxxf sin6)( 2 +−= . 

2

(c) Define a confluent divided difference of order one. 2
(d) Write down the remainder term associated with Newton’s forward 

interpolation formula with )1( +n  equispaced interpolating points 
,0x  .,,1 nxx K  Hence show that the maximum absolute error in linear 

interpolation is given by 82
2Mh  where 2M is )(max

10
xf

xxx
′′

≤≤
. 

4

  
7.  (a) Explain the principle of numerical differentiation. Deduce Lagrange’s 

differentiation formulae, both of 1st and 2nd order (without error term).    
1+4

(b) Describe Hermit interpolation. Deduce the interpolation formula. 5
  

8.  (a) State the general principle of Newton-Cotes’ closed type formula for 

evaluating an integral of the form ∫
b

a

dxxf )(  where a, b are finite. Hence or 

otherwise obtain the trapezoidal rule. 

4+1

(b) Describe Gauss’ Elimination method for numerical solution of a system of 
linear equations and explain the pivoting process in this connection. 

5
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9.  (a) Describe Bisection method for computing a simple real root of 0)( =xf . 
Give a geometrical interpretation of the method and also the error estimate. 

5

(b) Solve the equation 1)0(,1
=

+
= y

yxdx
dy  by modified Euler’s method to 

obtain y(0.2) and y(0.4) correct up to 4D. 

5

  
10.(a) Explain the method of Regula-Falsi for computing a real root of an equation 

0)( =xf  and also explain the geometrical interpretation of the process. 
5

(b) Solve the equation ,22 yx
dx
dy

+=  1)0( =y  by fourth order Runge Kutta 

method for 2.0)1.0(O=x correct up to 4D. 

5

  

 Section-II 
[Marks: 20] 

 Answer any two questions from the following 10×2 = 20

11.(a) Discuss primary memory and secondary memory. What is the fundamental 
unit of measuring memory? 

3+2

(b) Draw a flowchart to find n! (n is a positive integer).   
(c) (i)  Convert (520.375)10 into octal form. 2+2+1

 (ii)  Use 2’s complement to compute (1110.1001)2 – (1010.011)2 
 (iii) Find the CNF of yxxy ′+ . 

  
12.(a) Write a FORTRAN 77/90 or C program to input 5 numbers and print the 

biggest of the five. 
5

(b) Write a FORTRAN 77/90 or C program to evaluate  

LL ++++++=
100

1
3
1

2
1

1
11e  correct to 4D. 

5

  
13.(a) Write a program in FORTRAN 77/90 or C to find a real root of the equation 

02.02 =+−− xex x  by the methods of iteration correct up to 6 decimal 
places. 

5

(b) Write a FORTRAN 77/90 or C program to test whether a given number is 
divisible by 7 but not by 3. 

5
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Group-A  

(VECTOR ANALYSIS-II) 
 Answer any one question from the following 10×1 = 10

1.  (a) Prove that dS
r

nr
r
dV

SV
∫ ∫∫ ∫ ∫

⋅
= 22

rr
 where S is any closed surface enclosing a 

volume V. 

5

(b) If kxzjyziyxF
rrrr

22 2014)63( +−+= , then evaluate ∫ ⋅
C

rdF rr
 from (0, 0, 0) 

to (1, 1, 1) along the path given by tx = , 2ty = , 3tz = . 

5

   

2.  (a) Using Stokes’ theorem, prove that div(curl 0) =F
r

 and curl(grad 0)
r

=φ . 5

(b) Prove that the necessary and sufficient condition that 0=⋅∫ rdF rr
 for every 

closed curve C is that 0
rrr

=×∇ F  identically. 

5

  

 Group-B  

(ANALYTICAL STATICS) 

 Answer any five questions from the following 7×5 = 35

3.   Explain the terms ‘force of friction’ and angle of friction. A uniform ladder 
with its lower end on a rough ground leans against a smooth vertical wall. 
Prove that  

 (i) If the inclination θ  of the ladder to the wall is less than the angle of 
friction λ , no load placed on the ladder, however large, can make it 
slip; 

 (ii) If )tan2(tan 1 λθλ −<< , the ladder can be made slip by placing on it an 
additional load, and  

 (iii) If )tan2(tan 1 λθ −>  the ladder will slip without any additional load. 
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4. Prove that if all the forces of a coplanar system acting on a rigid body are 
rotated about their point of application through the same angle in their plane, 
their resultant passes through a fixed point in the body. 

  
5. Three forces act along the straight lines 0=x , azy =− ; 0=y , axz =− ; 

0=z , ayx =− . Show that they can not reduce to a couple. Prove also that 
if the system reduces to a single force its line of action must lie on the 
surface 2222 222 axyzxyzzyx =−−−++ . 

  
6. Find the centre of gravity of the area of the cardioid )cos1( θ+= ar . 
  
7. Determine the conditions of equilibrium of a particle constrained to rest on a 

rough plane curve )(xy φ=  under the action of any given forces. 
  
8. What is the energy test of stability? Establish the energy test of stability for 

a rigid body with one degree of freedom only, in equilibrium under 
conservative forces. 

  
9. A body rests in equilibrium on another fixed body having enough friction to 

prevent sliding, the portion of the two bodies in contact are spherical and of 
radii r and R respectively and the line joining their centers in position of 

equilibrium is vertical. Show that the equilibrium is stable if 
Rrh
111

+>  

where h is the height of the C.G. of the body in position of equilibrium 
above the point of contact. 

  
10. Two uniform rods AB, BC of weight W and W ′  are smoothly jointed at B 

and their middle points are joined across by a chord. The rods are tightly 
held in a vertical plane with their ends A, C resting on a smooth horizontal 
plane. Show by using the principle of virtual work that the tension in the 
chord is BCAWW sin/coscos)( ⋅′+ . 

  
11. A force P acts along the axis of x and another force nP acts along a 

generator of the cylinder 222 ayx =+ . Show that the central axis lies on the 
cylinder 4222222 )1()( naynznxn =++− . 

  

 Group-C 
(RIGID DYNAMICS) 

 Answer any two questions from the following. 15×2 = 30

12.(a) Find whether a given straight line is, at any point of its length, a principal 
axis of a material system. If it is so, then find the other two principal axes at 
that point. Hence show that if an axis passes through the centre of inertia of 
a body and is a principal axis at some point of its length, then it is a principal 
axis at all points of its length. 

8
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(b) Prove that the moment of inertia of a triangular lamina ABC about a 

perpendicular to the plane through the vertex A is )33(
3

222 acbM
−+ , 

where a, b, c are lengths of the sides of the triangle and M is its mass. 

7

  

13.(a) A compound pendulum of mass M oscillating about a fixed horizontal axis 
has its centre of oscillation at C. Find the period of oscillation of the 
compound pendulum. Show further that the period is unaltered even if a 
weight is rigidly attached to the body of the pendulum at C. 

8

(b) Find the moment of momentum of a rigid body moving in two dimensions 
about the origin. 

7

  

14.(a) An imperfectly rough sphere moves from rest down a plane inclined at an 
angle α  to the horizon. Determine the conditions on μ  for (i) never rolling 
(ii) rolling and no sliding (iii) pure rolling from the start. 

8

(b) A uniform rod AB is freely movable on a rough inclined plane, whose 
inclination to the horizon is α  and whose coefficient of friction is μ , about 
a smooth pin fixed through the end A; the rod is held in the horizontal 
position in the plane and allowed to fall from this position. If θ  be the angle 

through which it falls from rest, show that αμ
θ
θ cotsin
= . 

7

  

 Group-D 

(HYDROSTATICS) 

 Answer any two questions taking one question from each section. 

 SECTION-I 15×1 = 15
15.(a) A mass of liquid is in equilibrium under the action of conservative system of 

forces. Show that the surface of equi-pressure, equi density, and equi-
potential energy coincide. If the system of forces is the force of gravity only, 
show that these surfaces are horizontal. 

8

(b) A given volume V of a heavy liquid is acted on by forces xμ− , yμ− , 
zμ− . Find the equation of the free surface.  

7

  

16.(a) Prove that the depth of centre of pressure of a plane area immersed in a 
liquid under gravity is greater than that of the centre of mass of the area. 
What happens when the area is lowered further? 

8

(b) If a floating solid be a cylinder, with its axis vertical, the ratio of whose 
specific gravity to that of the fluid is σ , prove that the equilibrium will be 

stable, if the radius of the base to the height is greater than 2
1

)]1(2[ σσ − . 

7
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 SECTION-II 10×1 = 10

17.(a) A gass satisfying Boyle’s law ρkp =  is acted on by forces 22 yx
yX
+
−

= , 

22 yx
xX
+

= . Show that the density varies as ke
θ

 where 
x
y

=θtan . 

5

(b) A cone whose vertical angle is α2 , has the lowest generator horizontal and 
is filled with liquid. Prove that the resultant thrust on the curved surface is 

α2sin151+  times the weight of the liquid. Also determine the inclination 
of the thrust. 

5

  

18.(a) Find the condition for existence of metacentre of a body and prove the 

formula 
V

AKHM
2

= , with usual notations, for finding the metacentre of the 

body floating freely in a homogeneous liquid at rest under gravity.  

5

(b) Find the thrust on a vertical quadrilateral which has one side of length a in 
the surface and the opposite side of length b parallel to it at depth h. 

5
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WEST BENGAL STATE UNIVERSITY 

B.Sc. Honours PART-III Examinations, 2018  

MATHEMATICS-HONOURS 

PAPER- MTMA-VIII-A 
 

Time Allotted: 2 Hours Full Marks: 50 

The figures in the margin indicate full marks.  
Candidates should answer in their own words and adhere to the word limit as practicable. 

All symbols are of usual significance. 

 Group-A 

Section-I 

LINEAR ALGEBRA 

 Answer any one question from the following 10×1 = 10

1.  (a) If V and W are two finite dimensional vector spaces and WV:T →  is a 
one-one linear map, then show that the images of linearly independent set of 
vectors in V are linearly independent in W. 

2

(b) Is there a linear transformation T : ℝ3 → ℝ2 such that T (1, –1, 1) = (1, 0) 
and T (1, 1, 1) = (0, 1) ? Justify.  

3

(c) For a positive integer n, nP  denotes the vector space of polynomials of 
degree n≤ , over the field of real numbers. Determine explicitly the linear 
map 23: PPT →  which maps the vectors 1, 1 – x, x2, x3 in 3P  respectively to 
the vectors x2, 0, x, 1 + x in 2P . Then calculate the matrix of T relative to the 
ordered bases })1(,)1(,1,1{ 32

1 −−−= xxxB  and },,1{ 2
2 xxB = . 

3+2

   
2.  (a) Let UV: →T  and WU: →S  be linear maps where, V, U, W are finite 

dimensional vector spaces over a field F. Then relative to a choice of 
ordered bases, show that )()()( TmSmTSm ⋅=⋅  [where )(Tm  stands for the 
matrix of T with respect to the chosen basis]. 

5

(b) For a positive integer n , nP  denotes the vector space of polynomials of 
degree n≤ , over the field of real numbers. Let 32: PPT →  be a linear 
transformation defined by 

( ) ∫+′=
x

dttfxfxfT
0

)(3)(2)( , for all 2)( Pxf ∈ . 

Prove that T is injective. 

3
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(c) The matrix representation of a linear mapping T : ℝ3 → ℝ3 is 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

310
121
211

 

relative to the standard basis of ℝ3. Find the explicit representation of T. 

2

  

 Section-II 

MODERN ALGEBRA 

 Answer any one question from the following 8×1 = 8

3.  (a) Define kernel of a homomorphism with example. 2
(b) Prove that if ),(),(: ∗′→ GG oφ  be a homomorphism then kerφ  is a normal 

subgroup of G. 
2

(c) Show that two finite cyclic groups are isomorphic.  4
  

4.  (a) If ),( oH  is a normal subgroup of a group ),( oG , then prove that the 
quotient group ),( ∗HG  is Abelian if and only if 

Hyxyx ∈−− 11 ooo  Gyx ∈∀ , . 

4

(b) If G is a commutative group and GG ′→:φ  is an epimorphism from G to 
any group G′ , then show that G′  is also commutative. Is the converse true? 
Justify. 

2+2

  

 Section-III 

BOOLEAN ALGEBRA 

 Answer any one question from the following 7×1 = 7

5.  (a) Define a Boolean Algebra. Prove that )(AP , the power set of a non-empty 
set A, forms a Boolean Algebra with respect to the set union, intersection 
and complementation.  

1+3

(b) Draw the circuit that realises the function f given in the following table:  

1111
1011
0101
1001
1110
0010
0100
0000
fzyx

 

3
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6.  (a) Express the Boolean expression )()()( zxyxyx +′′++  in DNF in the 

variable x, z and also express it in DNF in the variables x, y, z. 
4

(b) If x, y, z are three switches, then draw a switching circuit representing 
)()()]([ yzxzzyxzx ++′++ . 

3

  

 Group-B 

DIFFERENTIAL EQUATIONS-III 

 Answer any one question from the following 15×1 = 15

7.  (a) Obtain the series solution of 02)1( 2

2
2 =+− y

xd
ydx , given 4)0( =y , 

5)0( =′y . 

5

(b) Using change of scale property, evaluate }6sin56cos3{L tt −  and hence 

show that 
404
)8(3)}6sin56cos3({L 2

2

++
−

=−−

ss
stte t . 

5

(c) Solve using Laplace transform: 

xe
dx
dy

xd
yd x sin2
2

2
−=+ , 0)0( =y , 0)0( =′y . 

5

  

8.  (a) Applying power series method, solve xy
xd
yd

=−2

2

. 5

(b) If )(
)()(

1)( 2222 ba
bsas

sF ≠
++

= , then find )(tf , where )}({L)( 1 sFtf −= . 5

(c) Using first shifting property of Laplace transform evaluate  

⎟
⎠
⎞

⎜
⎝
⎛

+−
−−

204
10L 2

1

ss
s . 

5

  

 Group-C 

TENSOR CALCULUS 

 Answer any one question from the following 10×1 = 10

9.  (a) If iA  and iB  are two non-null vectors such that ,ji
ij

ji
ij VVgUUg =  where 

iii BAU +=  and iii BAV −= . Show that iA  and iB  are orthogonal. 

2

(b) Prove that sum of two tensors of same type is a tensor of same type. 2

(c) Prove that Christofel symbols are not tensors. 3
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(d) Show that in a Riemannian space nV  of dimension n, with metric tensor ijg , 

( )g
xji

i
j log

∂
∂

=
⎭
⎬
⎫

⎩
⎨
⎧

, where || ijgg = . 

3

  

10.(a) Line element of two neighboring points )( ixP  and )( ii dxxQ +  in a 
3-dimensional space is given by  

32212322212 42)(3)(2)( dxdxdxdxdxdxdxds +−++= . 

By this line element, does the above space form a Riemannian space? Justify 
it. 

4

(b) Show that 0, =jikg  and 0, =i
jkδ . 2+1

(c) Show that ji
ij dxdxg  is an invariant, where ijg  is the fundamental metric 

tensor.  

3

 


