

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 4th Semester Examination, 2022

MTMACOR09T-MATHEMATICS (CC9)

Time Allotted: 2 Hours

Full Marks: 50

The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

Answer Question No. 1 and any *five* from the rest

1.	Answer any <i>five</i> questions from the following:	2×5 = 10
(a)	If S be the set of all points (x, y, z) in \mathbb{R}^3 satisfying the inequality $z^2 - x^2 - y^2 > 0$, determine whether or not S is open.	2
(b)	Show that the set $S = \{(x, y): x, y \in Q\}$ is not closed in \mathbb{R}^2 .	2
(c)	Prove / disprove: $S = \{(x, y) : x < 1, y < 1\}$ is open in \mathbb{R}^2 .	2
(d)	Show that $\lim_{(x, y)\to(0, 0)} (x+y) = 0$.	2
(e)	If $u = F(y-z, z-x, x-y)$, then prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.	2
(f)	Find the gradient vector at each point at which it exists for the scalar field defined by $f(x, y, z) = x^2 - y^2 + 2z^2$.	2
(g)	Use Stokes' theorem to prove that $\int_C \vec{r} \cdot d\vec{r} = 0$.	2
(h)	What do you mean by conservative vector field?	2
2. (a)	Show that the limit, when $(x, y) \rightarrow (0, 0)$ does not exist for $\lim \frac{2xy}{x^2 + y^2}$.	4
(b)	If $f(x, y) = \sqrt{ xy }$, find $f_x(0, 0)$, $f_y(0, 0)$.	2+2
3. (a)	Show that the function $ x + y $ is continuous, but not differentiable at the origin.	4
(b)	Evaluate $\iint_{R} (x+2y) dx dy$, over the rectangle $R = [1, 2; 3, 5]$.	4

- 4. (a) For the function f: D(⊂ ℝ²) → ℝ and β be a unit vector in ℝ², define the directional derivative of f in the direction of β at the point (a, b) ∈ ℝ². Show that the directional derivative generalise the notion of partial derivatives.
 - (b) Prove that $f(x, y) = \{|x + y| + (x + y)\}^k$ is everywhere differentiable for all values of $k \ge 0$.

1

- 5. (a) Using divergence theorem evaluate $\iint_{S} \mathbf{A} \cdot \mathbf{n} \, dS$, where $\mathbf{A} = (2x^2, y, -z^2)$ and *S* denote the closed surface bounded by the cylinder $x^2 + y^2 = 4$, z = 0 and z = 2.
 - (b) Find the directional derivative of $f(x, y) = 2x^3 xy^2 + 5$ at (1, 1) in the direction 4 of unit vector $\beta = \frac{1}{5}(3, 4)$.

6. (a) Show, by changing the order of integration, that
$$\int_{0}^{1} dx \int_{x}^{1/x} \frac{y \, dy}{(1+xy)^{2}(1+y^{2})} = \frac{\pi - 1}{4}.$$

(b) Show that
$$\iint_E \frac{\sqrt{a^2b^2 - b^2x^2 - a^2y^2}}{\sqrt{a^2b^2 + b^2x^2 + a^2y^2}} \, dx \, dy = ab \frac{\pi}{4} \left(\frac{\pi}{2} - 1\right)$$
, where *E* is the region in the positive quadrant of the ellipse $\frac{x^2}{2} + \frac{y^2}{2} = 1$

the positive quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

- 7. (a) Prove that of all rectangular parallelopiped of same volume, the cube has the least 4 surface area, using Lagrange's multipliers method.
 - (b) If z is a differentiable function of x and y and if $x = c \cosh u \cos v$, $y = c \sinh u \sin v$, 4 then prove that

$$\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2} = \frac{1}{2}e^2(\cosh 2u - \cos 2v)\left(\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}\right)$$

- 8. (a) Show that the vector field given by $A = (y^2 + z^3, 2xy 5z, 3xz^2 5y)$ is 4 conservative. Find the scalar point function for the field.
 - (b) Evaluate $\int_{C} (y \, dx + z \, dy + x \, dz)$, applying Stokes' Theorem, where *C* is the curve 4 given by $x^2 + y^2 + z^2 2ax 2ay = 0$, x + y = 2a and begins at the point (2*a*, 0, 0) and goes at first below the *z*-plane.
- 9. (a) Evaluate the line integral $\int_{C} [2xy \, dx + (e^x + x^2) \, dy]$ by using Green's theorem, 4 around the boundary *C* of the triangle with vertices (0, 0), (1, 0), (1, 1).
 - (b) Find the surface area of the sphere $x^2 + y^2 + z^2 = 9$ lying inside the cylinder $4x^2 + y^2 = 3y$.

×_

N.B.: Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.