

Teaching Plan

Department of Mathematics

2022-23

NAME OF THE PROGRAMME

B.SC. (HONOURS)INMATHEMATICS

PROGRAMME OUTCOME

After completion of the programme, a student of Department of Mathematics, will be able to

- demonstrate fundamental systematic knowledge of mathematics and its applications in engineering, science, technology and mathematical sciences;
- demonstrate educational skills in areas of analysis, geometry, algebra, mechanics, differential equations, etc;
- apply knowledge, understanding, and skills to identify the difficult/unsolved problems in mathematics and to collect the required information in possible range of sources and try to analyse and evaluate these problems using appropriate methodologies;
- fulfil learning requirements in mathematics, drawing from a range of contemporary research works and their applications in diverse areas of mathematical sciences;
- apply disciplinary knowledge and skills in mathematics in newer domains and uncharted areas;
- identify challenging problems in mathematics and obtain well-defined solutions;
- exhibit subject-specific transferable knowledge in mathematics relevant to job trends and employment opportunities.

Notes:

You can merge cells in between and add students' seminars and class tests / internal assessment.

For incorporating PO / CO at UG level, you may refer to your WBSU CBCS syllabus.

If not there you can refer to the UGC model syllabus

https://www.ugc.ac.in/ugc_notices.aspx?id=MTA3Nw==

		S	Semester			Ι			
Course Title	9	Calculus, Geometry and Ordinary Differential Equation							
Course Code	ourse Code MTMACOR01T Credit 6								
Course Outo		 On completion of the course, a student will be able to calculate the higher order derivatives and apply them in proper situations; acquire the concept of asymptotes and envelopes; calculate limits in indeterminate forms by a repeated use of L'Hospital's rule; determine concavity and convexity of a function from its graph and from its second derivative; explain the properties of two and three dimensional shapes; trace a curve; solve first order ordinary differential equations utilizing the standard techniques for separable, exact, linear, homogeneous or Bernoulli cases. 							
Instruction		6 Months	Class/W		6		ırs/week	6	
			me of Exa	amin	ation				
Maximum S	core	75	Interna]	25	Enc	l Semeste	r	50
Course Mapping									
Units	Units Course Content Lecture Hour (Cum					nul	ative)		
	Hyperbolic Leibnitz rule	functions, higher order derivatives, 24 e and its applications to problems of type							

(July)	$e^{ax \Box b} \sin x, e^{ax \Box b} \cos x, (ax+b)^n \sin x, (ax+b)^n \cos x.$	
	Assignments & Internal Assessment.	
	Assignments & Internal Assessment.	
Aug.	Concavity and inflection points, envelopes,	24
	asymptotes, curve tracing in Cartesian coordinates.	
	Assignments & Internal Assessment.	
Sep.	Tracing in polar coordinates of standard curves,	24
	L'Hospital's rule, applications in business, economics	
	and life sciences.	
	Assignments & Internal Assessment.	
Oct.	Reduction formulae, derivations and illustrations of	24
	reduction formulae for the integration of sin ⁿ x, cos ⁿ x.	
	Assignments & Internal Assessment.	
Nov.	Parametrizing a curve, arc length, arc length of	24
	parametric curves, area of surface of revolution.	
	Assignments & Internal Assessment.	
Dec.	Assignments, Internal Assessment, Remedial	24
	Classes& Seminar.	
III & IV	Reflection properties of conics, translation and	24
	rotation of axes and second	
(July)	degree equations, classification of conics using the	
	discriminant, polar equations of conics.	
	Assignments & Internal Assessment.	
Aug.	Spheres. Cylindrical surfaces. Central conicoids,	24
	paraboloids, plane sections of conicoids.	
	Assignments & Internal Assessment.	
Sep.	Generating lines, classification of quadrics,	24
	Illustrations of graphing standard quadric surfaces like	

	cone, ellipsoi	d.						
	Assignments	& Internal Assessment						
Oct.	General, par solutions of a	equations and mathem ticular, explicit, implic differential equation. & Internal Assessment	it and singular	24				
Nov.	separable equ form. Assignments	arable equations and equations reducible to this n. signments, Remedial Classes, Seminar & ernal Assessment.						
Dec.	integrating fa	ion and Bernoulli equ ctors and transformations , Internal Assessme minar.	3.	24				
		Semester		I				
Course Ti	tle	Algebra						
Course Co	ode	MTMACOR02T	Credit	6				
Course Ou	utcome	 methods; define and partitions, and employ De Masolve numerica recognize correquations by tusing rank; 	real or compl recognize rela functions; oivre's theorem al problems; nsistent and in the row echelon	vill be able to ex polynomials using vari- ations, equivalence relation in a number of applications iconsistent systems of lin form of the augmented mat nding eigenvectors for a squ	ons, s to lear trix,			

	matrix.									
Scheme of Instruction										
Total D	uration	6 Months	Class/We	6	Hours/week	6				
			ek							
Instruct	tion Mode	Lecture								
		Schei	ne of Exami	nation						
Maximu	ım Score	75	Internal	25	End Semeste	r 50				
		C	ourse Mapp	ing						
		~								
Units		Course Co	ontent		Lecture Hour (Cu	imulative)				
I & II					24					
	Polar representat			s of unity,						
July	and its application									
	Assignments & I		ient.							
Aug.	Theory of equa	tions: Relation	between roots	and	24					
nug.	coefficients, Trans				27					
	signs, Cubic (Card	an's method) an	d biquadratic equ	ations						
	(Ferrari's method).								
	Assignments & I	nternal Assessn	ient.							
Sep.	Inequality: The in-	equality involvin	g AM≥GM≥HM, Ca	uchy-	24					
	Schwartz inequali	ty, Equivalence r	elations and parti	tions.						
	Assignments & In			functions						
Oct.	Functions, Com									
	One to one corre									
	ordering property of positive integers.									
	Assignments &	Internal Asses	ssment.							
Nov	Division algorithr	n, Divisibility ar	d Euclidean algo	rithm.	24					
	Congruence relati	on between integ	gers.							

	Assignments & Internal Assessment.	
Dec.	Principles of Mathematical Induction, statement of	24
	Fundamental Theorem of Arithmetic.	
	Assignments, Internal Assessment, Remedial	
	Classes& Seminar.	
III &IV	Systems of linear equations, row reduction and echelon	24
T1	forms, vector equations, the matrix equation Ax=b,	
July	solution sets of linear systems.	
	Assignments & Internal Assessment.	
Aug.	Applications of linear systems, linear	24
	independence.Matrix, inverse of a	
	matrix, characterizations of invertible matrices.	
	Assignments & Internal Assessment.	
Sep.	Characterizations of invertible matricesRank of a matrix,	24
	Eigen values, Eigen Vectors and Characteristic Equation	
	of a matrix.	
	Assignments & Internal Assessment.	
Oct.	Eigen Vectors and Characteristic Equation of a matrix.	24
	Assignments & Internal Assessment.	
Nov.	Cayley-Hamilton theorem and its use in finding the	24
	inverse of a matrix.	
	Assignments & Internal Assessment.	
Dec.	Assignments, Internal Assessment, Remedial Classes&	24
	Seminar.	

	Semester	II	
Course Title	Real Analysis	I	
Course Code	MTMACOR03T	Credit	6

Course Out	come	On completion of the course, a student will be able to							
	 describe different properties of the real line R; define and recognize bounded, convergent, divergent, Cauchy, an monotonic sequences, and calculate limit superior, limit inferior or bounded sequences; apply the ratio, root, alternating series and limit comparison tests for convergence and absolute convergence of an infinite series of real numbers. 								
		Scl	neme of Instru	ction					
Total Durat	ion	6 Months	Class/Week	6		Hours/week	6		
Instruction	Mode	Lecture							
		Sch	eme of Examin	ation					
Maximum S	Score	75	Internal	25		End Semester	r 50		
			Course Mappin	ıg					
Units		Course	e Content		Lecture Hour (Cumulative)				
I,II&III	Review of	Algebraic and	d Order Properties	of ℝ, ε-		24			
(Jan.)	Ŭ		in \mathbb{R} . Idea of counta	ŕ					
			countability of \mathbb{R} . I elow sets, Bound						
			a and Infima.Comp						
	Property of	perty of Rand its equivalent properties.							
	Assignmen	nments & Internal Assessment.							
Feb.	The Archin	nedean Proper	ty, Density of Ratio	nal (and		24			
	, í		Intervals. Limit po						
	set, Isolated	1 points, Open	set, closed set, der	ived set,					

	Illustrations of Bolzano-Weierstrass theorem for sets,	
	compact sets in \mathbb{R} , Heine-BorelTheorem.	
	Assignments & Internal Assessment.	
March	Sequences, Bounded sequence, Convergent sequence,	24
	Limit of a sequence, liminf, lim sup. Limit Theorems.	
	Monotone Sequences, Monotone Convergence	
	Theorem, Subsequences, Divergence Criteria.	
	Monotone Subsequence Theorem (statement only),	
	Bolzano Weierstrass Theorem for Sequences.	
	Assignments & Internal Assessment.	
April	Cauchy sequence, Cauchy's Convergence Criterion,	24
	Infinite series, convergence and divergence of infinite	
	series, Cauchy Criterion.	
	Assignments & Internal Assessment.	
May	Tests for convergence: Comparison test, Limit	24
	Comparison test, Ratio Test, Cauchy's nth root test,	
	Integral test.	
	Assignments, Remedial classes & Internal	
	Assessment.	
•		
June	Alternating series, Leibniz test. Absolute and	24
	Conditional convergence.	
	Assignments, Internal Assessment, Remedial	
	Classes& Seminar.	

	Semester	II
Course Title	Differential Equation	on and Vector Calculus

Course	Code	Code MTMACOR04T Credit 6													
Course Outcome On completion of the course, a student will be able to • compute exact solutions of solvable first order differentia equations and linear differential equations of higher order usin various methods; • apply Picard's method of obtaining successive approximation of solutions of first order differential equations, and Pows series method for higher order linear equations, especially cases when there is no method available to solve succequations; • describe the concept of a general solution of a linear differentia equation of an arbitrary order, and also to obtain them usin prescribed methods; • formulate mathematical models in the form of ordinare differential equations to suggest possible solutions of the day day problems arising in physical, chemical and biologic disciplines; • do the phase plane analysis; • find the vector triple product and product of four vectors ar use it to find the equation of straight lines, planes in vector fort							rder using eximations nd Power becially in blve such lifferential nem using ordinary the day to biological								
Total Du	iration	6 Months	Class/We	ek	6	Hou	ırs/week	6							
Instruct	ion Mode	Lecture													
		Sche	me of Exa	min	ation										
Maximu	m Score	75	Internal	l	25	End	Semester	50							
		C	Course Ma	ppin	g										
Units	Course Content Lecture Hour (Cumulative)							nulative)							
I,II,III & IV (Jan)	Lipschitz condition and Picard's Theorem (Statement 24 only). General solution of homogeneous equation of second order, principle of super position for homogeneous equation. Wronskian: its properties and														
			ſ	1				homogeneous equation, Wronskian: its properties and							

	applications.	
	Assignments & Internal Assessment.	
(Feb)	Linear homogeneous and non-homogeneous equations of	24
	higher order with constant coefficients, Euler's equation,	
	method of undetermined coefficients, method of	
	variation of parameters.	
	Assignments & Internal Assessment.	
March	System of linear differential equations, types of linear	24
	systems, differential operators, an operator method for	
	linear systems with constant coefficients.	
	Assignments & Internal Assessment.	
April	Basic Theory of linear systems in normal form,	24
1	homogeneous linear systems with constant coefficients:	
	Two Equations in two unknown functions, Equilibrium	
	points, Interpretation of the phase plane.	
	Assignments & Internal Assessment.	
May	Power series solution of a differential equation	24
	about an ordinary point, solution about a regular	
	singular point.Triple product, introduction to vector	
	functions.	
	Assignments & Internal Assessment.	
June	Operations with vector-valued functions, limits and	24
	continuity of vector functions, differentiation and	
	integration of vector functions.	
	Assignments, Internal Assessment, Remedial	
	Classes& Seminar.	

Semester						II	Ι	
Course	Title	Theory of Re	al Functions	<u> </u>				
Course	Code	MTMAC	OR05T	Cre	dit		6	
Course	Outcome	Upon compl the basics of			-			
		Sch	eme of In	stru	ction			
Total D	uration	6 Months	Class/W	eek	6	Ηοι	ırs/week	6
Instruct	ion Mode	Lecture			<u> </u>			I
		Sche	eme of Ex	amin	ation			
Maximu	ım Score	75	Interna	1	25 En		I Semester	r 50
		(Course Ma	appiı	ıg			
Units		Course C	Content			Lecture	Hour (Cu	nulative)
I (July)	Limits of functions (ε - δ approach), sequential criterion 24 for limits, divergence criteria. Limit theorems, one sided 1 limits. Assignments & Internal Assessment.							
Aug.	Infinite limits a Continuous fun and discontinui	ctions, sequen		for co	ontinuity		24	

	Assignments & Internal Assessment.	
Sep.	Algebra of continuous functions, Continuous functions	24
I	on an interval, intermediate value theorem, location of	21
	roots theorem.	
	Assignments & Internal Assessment.	
Oct.	Preservation of intervals theorem.	24
	Uniform continuity, non-uniform continuity criteria.	
	Assignments & Internal Assessment.	
Nov.	Uniform continuity theorem.	24
	Assignments & Internal Assessment.	
Dec.	Assignments, Internal Assessment, Remedial	24
	Classes& Seminar.	
II	Differentiability of a function at a point and in an	24
July	interval, Caratheodory's theorem, algebra of	
July	differentiable functions.	
	Assignments & Internal Assessment.	
Aug.	Relative extrema, interior extremum, theorem	24
	Assignments & Internal Assessment.	
Sep.	Rolle's theorem, Mean value theorem, Intermediate	24
	value property of derivatives, Darboux's theorem.	
	Assignments & Internal Assessment.	
Oct.	Mean value theorem, intermediate value property of	24
	derivatives, Darboux's theorem.	
	Assignments & Internal Assessment.	

Nov.	Applications of mean value theorem to inequalities and	24
	approximation of polynomials.	
	Assignments & Internal Assessment.	
Dec.	Assignments, Internal Assessment, Remedial Classes& Seminar.	24
III	Cauchy's mean value theorem. Taylor's theorem with Lagrange's form of remainder.	24
July	Assignments & Internal Assessment.	
Aug.	Taylor's theorem with Cauchy's form of remainder.	24
	Assignments & Internal Assessment.	
Sep.	Application of Taylor's theorem to convex functions, relative extrema.	24
	Assignments & Internal Assessment.	
Oct.	Taylor's series and Maclaurin's series expansions of exponential and trigonometric functions.	24
	Assignments & Internal Assessment.	
Nov.	ln(1 + x), 1/ax+b and (1 +x) ⁿ . Application of Taylor's theorem to inequalities.	24
	Assignments & Internal Assessment.	
Dec.	Assignments, Internal Assessment, Remedial Classes& Seminar.	24

	Semester		I
Course Title	Group Theory–I		
Course Code	MTMACOR06T	Credit	6
Course Outcome	There is a scope, for ap	plying the acquired kno	wledge of the above

Total D	methods/ tools of Group Theory-I, to solve complex mathematical problems in all of its relevant fields applications, to develop abstract mathematical thinking as well as discovering new avenues, that facilitates for higher research and its extensions. Scheme of Instruction Fotal Duration 6 Months Class/Week 6 Hours/week 6					
Instruct	ion Mode	Lecture				
		Sch	eme of Examina	ition		
Maximu	ım Score	75	Internal	25	End Semeste	r 50
			Course Mapping	g		
Units		Course (Content		Lecture Hour (Cu	mulative)
I to V July	Symmetries of a square, Dihedral groups, definition and examples of groups including permutation groups and quaternion groups (through matrices), elementary properties of groups.					
Aug.	Assignments & Internal Assessment. Aug. Subgroups and examples of subgroups, centralizer, normalizer, center of a group, product of two subgroups. 24 Assignments & Internal Assessment. 24					
Sep.	ep.Properties of cyclic groups, classification of subgroups of cyclic groups, Cycle notation for permutations, properties of permutations, even and odd permutations, alternating group.24Assignments & Internal Assessment.1					

Oct.	Properties of cosets, Lagrange's theorem and consequences including Fermat's Little theorem. Assignments & Internal Assessment.	24
Nov	External direct product of a finite number of groups, normal subgroups, factor groups, Cauchy's theorem for finite abelian groups. Assignments & Internal Assessment.	24
Dec.	 Group homomorphisms, properties of homomorphisms, Cayley's theorem, properties of isomorphisms, First, Second and Third isomorphism theorems. Assignments & Internal Assessment. 	24

	S	Semester	III				
Course Title	Numerica	l Methods	5				
Course Code	MTMACO	OR07T	Cre	dit		6	
Course Outcome	 After completion of the course, the student is expected to : understand basic theories of numerical analysis, formulate and solve numerically problems from different branches of science, grow insight on computational procedures. 						
	Sch	eme of In	stru	ction			
Total Duration	6 Months Class/Week 6 Hours/week 6						
Instruction Mode	Instruction Mode Lecture & Practical						
	Sche	eme of Ex	amir	ation			

Maximum	Maximum Score 75 Internal 25		25	End Semester	50		
		1	Course Mapp	ing			
Units		Cours	e Content		Lecture Hour (Cun	nulative)	
I to VI (July)	Round off, Tr equations: Bi				24		
Aug.	method, fi method. Rat	Newton's method, Secant method, Regula-falsi24method, fixed point iteration, Newton-Raphson24method. Rate of convergence of these methods.24Assignments & Internal Assessment.24					
Sep.	System of linear algebraic equations: GaussianElimination and Gauss Jordan methods. Gauss Jacobimethod, Gauss Seidel method and their convergenceanalysis, LU Decomposition.Assignments & Internal Assessment.				24		
Oct.	bounds, Fin and backw differentiati methods bas	ite difference vard differen ion: Method sed on finite o	and Newton's meth e operators. Gregor nce interpolations. s based on inter differences.	y forward Numerical	24		
Nov	Trapezoidal 3/8th rule, V Composite 1/3rd rule,	l rule, Simp Weddle's rule Trapezoidal	Newton Cotes son's 1/3rd rule, e, Boole's rule. Midg rule, Composite S ature formula. The ver method.	point rule, Simpson's	24		

	Assignments & Internal Assessment.	
Dec.	Ordinary Differential Equations: The method of successive approximations, Euler's method, the modified Euler method, Runge-Kutta methods of orders two and four. Assignments & Internal Assessment.	

		~ .				7		
	Semester			IV				
Course Title	Riemann Inte	gration and S	eries c	of				
	Functions	-						
	1							
Course Code	MTMACO	OR08T	Cre	dit		6		
Course Outcome	the basics of	Upon completion of this course, the student will be able to understand the basics of Riemann Integration, Series of functions and improve the logical thinking.						
	Sch	eme of In	struc	ction				
Total Duration	6 Months	Class/W	eek	6	Hou	ırs/week	6	
Instruction Mode	Lecture							
Scheme of Examination								
Maximum Score	75Internal25End Semester50							
	(Course Ma	appir	ng				

Units	Course Content	Lecture Hour (Cumulative)
Ι	Riemann integration: inequalities of upper and lower	24
	sums, Darbaux integration.	
(Jan)	Assignments & Internal Assessment.	
Feb	Darbaux theorem, Riemann conditions of integrability.	24
	Assignments & Internal Assessment.	
Mar	Riemann sum and definition of Riemann integral through	24
	Riemann sums, equivalence of two definitions.	
A '1	Assignments & Internal Assessment.	24
April	Riemann integrability of monotone and continuous functions, Properties of the Riemann integral.	24
	runctions, i roperties of the Riemann integral.	
	Assignments & Internal Assessment.	
May	Definition and integrability of piecewise continuous and	24
	monotone functions.	
	Assignments & Internal Assessment.	
June	Intermediate Value theorem for Integrals, Fundamental theorem of Integral Calculus.	24
	Assignments, Seminar & Internal Assessment.	
II &	Improper integrals, Convergence of Beta and Gamma	24
III	functions.	
(Jan)	Assignments & Internal Assessment.	
Feb	Pointwise and uniform convergence of sequence of	24
	functions.	
	Assignments & Internal Assessment.	

Mar	Theorems on continuity, derivability and integrability of	24
	the limit function of a sequence of functions.	
	Assignments & Internal Assessment.	
April	Series of functions, Theorems on the continuity and	24
1	derivability of the sum function of a series of functions.	
	Assignments & Internal Assessment.	
May	Cauchy criterion for uniform convergence and	24
5	Weierstrass M-Test.	
	Assignments & Internal Assessment.	
June	Assignment, Seminar, Internal Assessment	24
	& Tutorial.	
IV &	Fourier series: Definition of Fourier coefficients and	24
V(Ion)	series.	
V(Jan)	Assignments & Internal Assessment.	
Feb	Reimann Lebesgue lemma, Bessel's inequality, Parseval's	24
	identity, Dirichlet's condition.	
	Assignments & Internal Assessment.	
Mar	Examples of Fourier expansions and summation results	24
	for series.	
	Assignments & Internal Assessment.	
April	Power series, radius of convergence, Cauchy Hadamard	24
	Theorem, Differentiation and integration of power series.	
	Assignments & Internal Assessment.	
May	Abel's Theorem; Weierstrass Approximation Theorem.	24
-	Assignments & Internal Assessment.	
June	Assignment, Seminar, Internal Assessment & Tutorial.	24

Semester	IV

Course 7	ſitle	Multivariate Calculus						
Course (Code	MTMACOR09T Credit		dit	6			
Course (Dutcome		Upon completion of this course, the student will be able to understand the basics of Multivariate Calculusand improve the logical thinking.					
		Sch	eme of Ins	struc	tion			
Total Du	ration	6 Months	Class/W	eek	6	Но	urs/week	6
Instructi	on Mode	Lecture						
		Sche	me of Exa	min	ation			
Maximu	m Score	75	Interna	ıl	25	Enc	l Semester	r 50
		C	Course Ma	ppin	g			
Units		Course C	ontent			Lecture	e Hour (Cur	nulative)
I (Jan)	functions of differentiatio	on.	nore varial		^{nuity} of Partial		24	
Feb		Internal Assess tiability and d		ity,			24	
	sufficient condition for differentiability.							
	Assignments &	ts & Internal Assessment.						
March	Chain rule for one and two independent parameters,				neters,		24	
	Directional de	Directional derivatives the gradient.						
	Assignments &	& Internal Asso	essment.					

Assignments & Internal Assessment.	24
Assignment, Seminar, Internal Assessment & Tutorial.	24
Change of variables in double integrals and triple integrals. Assignments & Internal Assessment.	24
Assignments & Internal Assessment.	
Volume by triple integrals, , cylindrical and spherical coordinates.	24
Assignments & Internal Assessment.	24
Assignments & Internal Assessment.	24
Double integrals in polar co-ordinates, Triple integrals.	24
Assignments & Internal Assessment.	
integration over non-rectangular region.	24
Assignment, Seminar, Internal Assessment & Tutorial.	24
Assignments & Internal Assessment.	
optimization problems.	
Method of Lagrange multipliers, constrained	24
Assignments & Internal Assessment.	
variables.	
	24
	Assignments & Internal Assessment.Method of Lagrange multipliers, constrained optimization problems.Assignments & Internal Assessment.Assignment, Seminar, Internal Assessment & Tutorial.Double integration over rectangular region, double integration over non-rectangular region.Assignments & Internal Assessment.Double integration over rectangular region.Assignments & Internal Assessment.Double integrals in polar co-ordinates, Triple integrals.Assignments & Internal Assessment.Triple integral over a parallelepiped and solid regions.Assignments & Internal Assessment.Volume by triple integrals, , cylindrical and spherical coordinates.Assignments & Internal Assessment.Change of variables in double integrals and triple integrals.Assignments & Internal Assessment.Change of variables in double integrals and triple integrals.Assignments & Internal Assessment.Definition of vector field, divergence and curl.

Jan		
Feb	Line integrals, Applications of line integrals: Mass and Work. Assignments & Internal Assessment.	24
March	Fundamental theorem for line integrals, conservativevector fields, independence.Assignments & Internal Assessment.	24
April	Green's theorem, surface integrals, integrals over parametrically defined surfaces. Assignments & Internal Assessment.	24
May	Stoke's theorem, The Divergence theorem. Assignments & Internal Assessment.	24
June	Assignment, Seminar, Internal Assessment & Tutorial.	24

Semester		IV			
Course Title	Ring Theory and L	Ring Theory and Linear Algebra I			
Course Code	MTMACOR10T	Credit	6		
Course Outcome	 describe the fun ideals, quotient r demonstrate the dimension and th identify matrices 	 On completion of the course, a student will be able to describe the fundamental concepts in ring theory such as of the ideals, quotient rings, integral domains, and fields; demonstrate the concepts of vector spaces, subspaces, bases dimension and their properties with examples; identify matrices with linear transformations; compute eigenvalues and eigenvectors of linear transformations. 			

		Sch	eme of Instru	ction			
Total D	uration	6 Months	Class/Week	6	Hours/week	6	
Instruct	ion Mode	Lecture		1			
		Sche	eme of Examin	ation			
Maximu	ım Score	75	Internal	25	End Semester	50	
		(Course Mappi	ng			
Units		Course C	Content		Lecture Hour (Cum	ulative)	
I & II	Definition and subrings.	examples of rir	ngs, properties of ri	ngs,	24		
Jan	Assignments & Internal Assessment.						
Feb	Integral domains and fields, characteristic of a ring.			ıg.	24		
	Assignments & Internal Assessment.						
March	Ideal, ideal gene operations on ide		et of a ring, factor ri naximal ideals.	ngs,	24		
	Assignments &	-					
April	Ring homomor		ties of ring		24		
	homomorphism	lS.					
	Assignments &	k Internal Ass	essment.				
May	Isomorphism theorems I, II and III, field of quotients. 24						
	Assignments & Internal Assessment.						
June	Assignment, Seminar, Internal Assessment & Tutorial.						
III &	Vector spaces,	subspaces, alge	bra of subspaces, c	ces, quotient 24			

IV	spaces.	
Jan	Assignments & Internal Assessment.	
Feb	linear combination of vectors, linear span, linear	24
	independence, basis and dimension, dimension of	
	subspaces.	
	Assignments & Internal Assessment.	
March	Introduction to linear transformations, Subspaces,	24
	dimension of subspaces, null space, range, rank and	
	nullity of a linear transformation.	
	Assignments & Internal Assessment.	
April	matrix representation of a linear transformation, algebra	24
-	of linear transformations.	
	Assignments & Internal Assessment.	
May	Isomorphisms. Isomorphism theorems, invertibility and	24
	isomorphisms, change of coordinate matrix.	
	Assignments & Internal Assessment.	
June	Assignment, Seminar, Internal Assessment & Tutorial.	24

	Semester	V	7
Course Title	Partial Differential I Differential Equatio		ons of Ordinary
Course Code	MTMACOR11T	Credit	6

Course	Outcome At the end of this course a student should be able to :					
		• learn to solv	ve different types of	of ODE &	PDE,	
		• test the stabil	formulate a	and solve problems	from allied	
	branches of science.					
		Sch	eme of Instruc	tion		
				-		
Total D	uration	6 Months	Class/Week	6	Hours/week	6
Instruct	ion Mode	Lecture				
		Saha	me of Examina	-4		
		Sche	me of Examination	ation		
Maximu	im Score	75	Internal	25	End Semeste	r 50
			Course Mappin	g		
	1					
Units		Course C	ontent		Lecture Hour (Cu	mulative)
I & II		_	s – Basic conce	_	24	
July	Definitions. N Equations: Class		Problems. First-	Order		
5						
	Assignments &	Internal Asses	sment.			
Aug.	Construction ar	nd Geometrical I	nterpretation.		24	
	Method of Char	acteristics for ol	btaining General Sc	olution of		
	Quasi Linear Equations.					
	Assignments &	Internal Asses	sment.			
Sep.	Canonical Forms of First-order Linear Equations. Method of Separation of Variables for solving first order partial differentialequations.				24	

	Assignments & Internal Assessment.	
Oct.	Derivation of Heat equation, Wave equation and Laplace equation.	24
	Assignments & Internal Assessment.	
Nov.	Classification of second order linear equations as hyperbolic, parabolic or elliptic.	24
	Assignments & Internal Assessment.	
Dec.	Reduction of second order Linear Equations to canonical forms.	24
	Assignments & Internal Assessment.	
III &	The Cauchy problem, Cauchy-Kowalewskaya theorem,	24
IV	Cauchy problem of an infinite string, Initial Boundary Value Problems.	
July	Assignments & Internal Assessment.	
Aug.	Semi-Infinite String with a fixed end, Semi-Infinite String with a Free end. Equations with non-homogeneous,	24
	boundary conditions. Non-Homogeneous Wave Equation.	
	Assignments & Internal Assessment.	
Sep.	Method of separation of variables, Solving the Vibrating String Problem. Solving the Heat Conductionproblem.	24
	Assignments & Internal Assessment.	
Oct.	Central force. Constrained motion, varying mass, tangent and normal components of acceleration.	24
	Assignments & Internal Assessment.	

Nov.	Modelling ballistics and planetary motion, Kepler's secondlaw. Assignments & Internal Assessment.	24
Dec.	Assignment, Seminar, Internal Assessment & Tutorial.	24

	S	Semester	V			
Course Title	Group Theory II					
Course Code	MTMACC	DR12T	Credit		6	
Course Outcome	On completion of the course, a student will be able to describe inner automorphisms and their properties; extend group structure to finite permutation groups (Cayley's Theorem); prove and apply Sylow's Theorems; generate groups with given specific conditions; investigate symmetry using group theory. Scheme of Instruction					Cayley's
Total Duration	6 Months	Class/We	ek 6	Ho	ours/week	6
Instruction Mode	Lecture					
	Scheme of Examination					
Maximum Score	75Internal25End Semester50					r 50
	Course Mapping					

Units	Course Content	Lecture Hour (Cumulative)
I & II July	Automorphism, inner automorphism, automorphism groups. Assignments & Internal Assessment.	24
Aug.	automorphism groups of finite and infinite cyclic groups, applications of factor groups to automorphism groups. Assignments & Internal Assessment.	24
Sep.	Characteristic subgroups, Commutator subgroup and its properties. Assignments & Internal Assessment.	24
Oct.	Properties of external direct products, the group of units modulo n as an external direct product, internal direct products.Assignments & Internal Assessment.	24
Nov	Fundamental Theorem of finite abelian groups. Assignments & Internal Assessment.	24
Dec.	Assignment, Seminar, Internal Assessment & Tutorial.	24
III & IV July	Group actions, stabilizers and kernels, permutation representation associated with a given group action. Assignments & Internal Assessment.	24
Aug.	Applications of group actions. Generalized Cayley's theorem. Index theorem. Assignments & Internal Assessment.	24
Sep.	Groups acting on themselves by conjugation, class	24

	equation and consequences, conjugacy in Sn.	
	Assignments & Internal Assessment.	
Oct.	p-groups, Sylow's theorems and consequences, Assignments & Internal Assessment.	24
Nov.	 Cauchy's theorem, Simplicity of A_n for n ≥ 5, non-simplicity tests. Assignments & Internal Assessment. 	24
Dec.	Assignment, Seminar, Internal Assessment & Tutorial.	24

Semester		· V	
Course Title	Linear Programmi	ng	
Course Code	MTMADSE01T	Credit	6
Course Outcome	 analyse and so situations; provide graphica with two variabl extreme points; apply the simple describe the r problems; describe the approblemes; 	rse, a student will be able t lve linear programming al solutions of linear pr es, and illustrate the con ex method to solve LPP's; elationships between t oplications of transporta -sum game problems.	g models of real life rogramming problems cept of convex set and the primal and dual

Total D	otal Duration6 MonthsClass/Week6		6	Hours/week	6	
Instruct	ion Mode					
		Sch	eme of Examin	ation		
Maximu	ım Score	75	Internal	25	End Semeste	r 50
			Course Mappin	ıg		
Units		Course C	Content		Lecture Hour (Cu	mulative)
I,II&III (July)	Introduction to linear programming problem. Theory of simplex method, graphical solution, convex sets, optimality and unboundedness.Assignments & Internal Assessment.				24	
Aug.	The simplex algorithm, simplex method in tableau format, introduction toartificial variables, two-phase method. Big-M method and theircomparison. Assignments & Internal Assessment.				24	
Sep.	Duality, formulation of the dual problem, primal-dual relationships, economic interpretation of the dual. Transportation problem and its mathematical formulation, northwest-corner method, least cost method and Vogel approximation method for determination of starting basic solution. Assignments & Internal Assessment.			24		
Oct.	Algorithmforsolvingtransportationproblem,assignmentproblemanditsmathematicalformulation,Hungarianmethodforsolvingassignmentproblem.Assignments & Internal Assessment.				24	

Nov.	Game theory: Formulation of two person zero sum	24
	games, solving two person zero sum games.	
	Assignments & Internal Assessment.	
Dec.	Games with mixed strategies, graphical solution procedure, linear programming solution of games. Assignments & Internal Assessment.	24

	Semester		V	
Course Title				
Course Code	MTMADSE02T	Credit		
Course Outcome	Scheme of	Instruction		
Total Duration	Class/W	/eek	Hours/week	
Instruction Mode				
Scheme of Examination				
Maximum Score	Intern	al	End Semester	
Course Mapping				

Units	Course Content	Lecture Hour (Cumulative)

	Semester	V		
Course Title	Probability and Statistics			
Course Code	MTMADSE03T	Credit	6	
Course Outcome	 On completion of the course, a student will be able to identify distributions in the study of the joint behaviour of two random variables; 			

	 establish a formulation helping to predict one variable in terms of the other, i.e., correlation and linear regression; prove and apply central limit theorem. 						
		Sc	heme of Instruc	ction			
Total Du	Total Duration6 MonthsClass/Week6Hours/week6						6
Instruct	ion Mode	Lecture		1			
		Sch	eme of Examin	ation			
Maximu	m Score	75	Internal	25		End Semester	r 50
			Course Mappir	lg			
Units		Course	Content		Lecture Hour (Cumulative)		
I, II, III &IV (July)	&IV (discrete and continuous), cumulative distribution function, probability mass/density functions,					24	
Aug.Discrete distributions: uniform, binomial, Poisson, geometric, negative binomial, continuous distributions: uniform, normal, exponential.Assignments & Internal Assessment.						24	
Sep.	joint probabi	lity density tributions, exp	function and its pro functions, margin pectation of function l expectations.	al and		24	

	Assignments & Internal Assessment.	
Oct.	Independentrandomvariables,bivariatenormaldistribution,correlationcoefficient,jointmomentgeneratingfunction (jmgf)andcalculationofcovariance(from jmgf),linearregressionfortwovariables.Assignments & Internal Assessment.	24
Nov.	 Chebyshev's inequality, statement and interpretation of (weak) law of large numbers and strong law of large numbers. Central Limit theorem for independent and identically distributed random variables with finite variance. Assignments & Internal Assessment. 	24
Dec.	Markov Chains, Chapman-Kolmogorov equations, classification ofstates, Random Samples, Sampling Distributions, Estimation of parameters, Testing of hypothesis. Assignments & Internal Assessment.	24

	Semester	VI			
Course Title	Metric Spaces and ComplexAnalysis				
Course Code	MTMACOR13T	Credit	6		
Course Outcome	 describe severa properties like Weierstrass prop identify comple projection of co describe the dia leading to the C 	urse, a student will be able to l standard concepts of n openness, closedness, o perty, compactness, and com ex numbers as points of mplex plane on the Riemann fferentiability and analytici fauchyRiemann equations; ny-Goursat theorem and Ca	netric spaces and their completeness, Bolzano- nectedness; R 2 and stereographic n sphere; ty of complex functions		

		evaluation of contour integrals;				
		apply Liouville's theorem in fundamental theorem of algebra;evaluate Taylor and Laurent series expansions of analytic functions;				
		• classify the nature of singularity, poles and residues and application				
	of Cauchy Residue theorem.					•••••••••
		Sch	eme of Instru	ction		
TetelD	· · · · · ·	(Mantha		(6
Total Dı	Iration	6 Months	Class/Week	6	Hours/week	6
Instruct	ion Mode	Lecture				
		Cala	· · · · · C T · · · · '			
		Sche	eme of Examir	ation		
Maximu	m Score	75	Internal	25	End Semeste	r 50
		(Course Mappi	ng		
Units		Course C	ontent		Lecture Hour (Cu	mulative)
I & II	-		examples. Open and		24	
Jan	-	-	interior of a set. Li	nit		
5411	point of a set, clo	osed set, diame	eter of a set.			
	Assignments &	Internal Asse	ssment.			
Feb	Subspaces, dens	e sets, separab	le spaces. Sequence	es in	24	
	Metric Spaces, O	Cauchy sequen	ces. Complete Met	ric		
	Spaces, Cantor's theorem.					
Assignments & Internal Assessment.						
March	arch Continuous mappings, sequential criterion and other				24	
characterizations of continuity, Uniform continuity,						
	Connectedness,	connected subs				
	Assignments &	Internal Asse	ssment.			

April	Compactness: Sequential compactness, Heine-Borel	24
[property, Totally bounded spaces, finite intersection	
	property, and continuous functions on compact sets.	
	Assignments & Internal Assessment.	
May	Homeomorphism, Contraction mappings, Banach Fixed	24
	point Theorem and its application to ordinary differential	
	equation.	
	Assignments & Internal Assessment.	
June	Assignment, Seminar, Internal Assessment & Tutorial.	24
III, IV,	Limits, Limits involving the point at infinity, continuity.	24
V& VI	Properties of complex numbers, regions in the complex	
væ vi	plane, functions of complex variable, mappings.	
(Jan)	Assignments & Internal Assessment.	
Feb	Derivatives, differentiation formulas, Cauchy-Riemann equations, sufficient conditions for differentiability. Assignments & Internal Assessment.	24
March	Analytic functions, examples of analytic functions,	24
	exponential function, Logarithmic function, trigonometric	
	function, derivatives of functions, and definite integrals of	
	functions.	
	Assignments & Internal Assessment.	
April	Contours, Contour integrals and its examples, upper	24
T	bounds for moduli of contour integrals. Cauchy-Goursat	
	theorem, Cauchy integral formula.	
	Assignments & Internal Assessment.	
May	Liouville's theorem and the fundamental theorem of algebra. Convergence of sequences and seriesTaylor series and its examples.	24
	Assignments & Internal Assessment.	

June	Laurent series and its examples, absolute and uniform	24
	convergence of power series.	
	Assignments & Internal Assessment.	

	Seme	ster			VI		
Course Title	MTMACOR141	Γ					
Course Code	Ring Theory and Linear Algebra II	y	Credit			6	
Course Outcome	 On completion of the course, a student will be able to describe polynomial rings, principal ideal domain, Euclidean dom and unique factorization domain, and their relationships; check reducibility of a polynomial; describe dual basis and find the connections between dual basis a linear transformations; describe the concept of minimal polynomial; develop an idea about inner product space and proceed to norn linear spaces; use Gram-Schmidt process to find orthogonal set of non-null vect from any arbitrary set of vectors. 					l basis and to normed	
Total Duration	6 months	Clas	ss/Week	6	Но	urs/week	6
Instruction Mode							
	Scheme of Examination						
Maximum Score 75 Inte			rnal	25	Enc	l Semeste	r 50
	Co	ourse	e Mappin	g			
Units	Course Co	ntent			Lecture	e Hour (Cui	mulative)

I, II &	Polynomial rings over commutative rings, division	24
III	algorithm and consequences, principal ideal domains,	
	factorization of polynomials.	
(Jan)		
	Assignments & Internal Assessment.	
Feb	Reducibility tests, irreducibility tests, Eisenstein criterion,	24
	and unique factorization in Z [x]. Divisibility in integral	
	domains, irreducible, primes, unique factorization	
	domains, Euclidean domains.	
	Assignments & Internal Assessment.	
March	Dual spaces, dual basis, double dual, transpose of a linear	24
	transformation and its matrix in the dual basis,	
	annihilators. Eigen spaces of a linear operator.	
	Assignments & Internal Assessment.	
April	Diagonalizability, invariant subspaces and Cayley-	24
	Hamilton theorem, the minimal polynomial for a linear	
	operator, canonical forms.	
	Assignments & Internal Assessment.	
May	Inner product spaces and norms, Gram-Schmidt	24
2	orthogonalisation process, orthogonal complements,	
	Bessel's inequality, the adjoint of a linear operator.	
	Assignments & Internal Assessment.	
June	Least Squares Approximation, minimal solutions to	24
	systems of linear equations, Normal and self-adjoint	
	operators, Orthogonal projections and Spectral theorem.	
	Assignments & Internal Assessment.	

		S	Semester			V	Ι	
Course '	Title	Theory of	Theory of Equations					
Course	Code	MTMADSE04T Credit			6			
Course	Outcome	The students of find out the u important one through them.	inknown valu e is the pro	ues an	d solve a	mathemati	ical equation	. The most
		Sch	eme of In	struc	ction			
Total D	uration	6 Months	Class/W	eek	6	Hou	ırs/week	6
Instruct	ion Mode	Lecture	1		L			
		Sche	eme of Ex	amin	ation			
Maximu	ım Score	75	Internal	25 Enc		I Semester	r 50	
		(Course Ma	appir	ıg			
Units		Course C	ontent			Lecture	Hour (Cu	nulative)
I,II,III	General proper	ties of polynom	ials, Graphic	al			24	
&IV	representation of	of a polynomial	, maximum a	and mi	nimum			
	values of a polynomials.							
(Jan)	Assignments & Internal Assessment.							
Feb	General properties of equations, Descarte's rule of signs						24	
	positive and ne	gative rule, Rel	ation betwee	n the r	oots			
	and the coeffici	ents of equation	ns.					
	Assignments &	z Internal Asso	essment.					

1	German their Germatic Annulis stimules of second sti	2.1
March	Symmetric functions. Applications of symmetric	24
	function of the roots. Transformation of equations.	
	Solutions of reciprocal and binomial equations.	
	Assignments & Internal Assessment.	
April	Algebraic solutions of the cubic (Cardan's method) and	24
-	biquadratic (Ferrari's method). Properties of the derived	
	functions.	
	Assignments & Internal Assessment.	
May	Symmetric functions of the roots, Newton's theorem on the sums of powers of roots, homogeneousproducts, limits of the roots of equations. Assignments & Internal Assessment.	24
June	Separation of the roots of equations, Strums theorem. Applications of Strum's theorem, Conditions for reality of the roots of an equation. Solution of numerical equations.	24
	Assignments & Internal Assessment.	

	Semester	V	I
Course Title			
Course Code	MTMADSE05T	Credit	
Course Outcome			

	Scheme of Instruction								
Total Du	iration		Class/Week			Hours/week			
Instruct	ion Mode	I							
		Scł	neme of Exami	ination					
Maximu	m Score		Internal			End Semester	•		
			Course Mapp	ing					
Units	Units Course Content				Le	ecture Hour (Cur	nulative)		

	Se	mester		VI			
Course Title	Mechanics						
Course Code	MTMADSE	06T Crea	lit	6			
Course Outcome	 On completion of the course, a student will be able to describe necessary conditions for the equilibrium of particles acted upon by various forces and learn the principle of virtual work for a system of coplanar forces acting on a rigid body; determine the centre of gravity of some materialistic systems and discuss the equilibrium of a uniform cable hanging freely under its own weight; solve problems about the kinematics and kinetics of the rectilinear and planar motions of a particle including the constrained oscillatory motions of particles; learn that a particle moving under a central force describes a plane curve and know the Kepler's laws of the planetary motions. 						
			6	TT / 1	(
Total Duration	6 Months	Class/Week	6	Hours/week	6		
Instruction Mode Lecture							
	Schem	e of Examina	ation				
Maximum Score	75 In	ternal	25	End Semester	r 50		

	Course Mapping					
Units	Course Content	Lecture Hour (Cumulative)				
I, II & III	Co-planar forces. Astatic equilibrium. Friction.	24				
(Jan)	Equilibrium of a particle on a rough curve. Virtual work. Forces in three dimensions.					
	Assignments & Internal Assessment.					
Feb	General conditions of equilibrium. Centre of gravityfordifferentbodies.Stableequilibrium.Assignments & Internal Assessment.	24				
March	 Equations of motion referred to a set of rotating axes. Motion of a projectile in a resisting medium. Stability of nearly circular orbits. Motion under the inverse square law. Assignments & Internal Assessment. 	24				
April	Slightly disturbed orbits. Motion of artificial satellites. Motion of a particle in three dimensions. Motion on a smooth sphere, cone, and on any surface of revolution. Assignments & Internal Assessment.	24				
May	 Degrees of freedom. Moments and products of inertia. Momental Ellipsoid. Principal axes. D'Alembert's Principle. Motion about a fixed axis. Compound pendulum. Assignments & Internal Assessment. 	24				
June	Motion of a rigid body in two dimensions under finite and impulsive forces. Conservation of momentum and	24				

energy.	
Assignments & Internal Assessment.	