

Teaching Plan

Department of Mathematics

2022-23

NAME OF THE PROGRAMME

M.SC. INMATHEMATICS

PROGRAMME OUTCOME

Successful completion of the two-year M.Sc. course in Mathematics will enable the students to

- 1. Approach and analyse the problems arising in their chosen careers in a logical manner and apply these skills to any real-life situation.
- 2. Apply computational and modelling skills to specific tasks, especially in the emerging and developing processes and industries.
- 3. Independently pursue research work in any area of Pure or Applied Mathematics; work in a group confidently and contribute significantly to any research project
- 4. Acquire a systematic knowledge of fundamental aspects of various branches of Mathematics which would help them in qualifying National and State-level examinations.
- 5. Think and analyse independently, and apply their skills in mathematical logic to any profession of their choice.
- 6. Take up pedagogy in Mathematics or related subjects if they are so inclined.

Notes:

You can merge cells in between and add students' seminars and class tests / internal assessment.

For incorporating PO / CO at UG level, you may refer to your WBSU CBCS syllabus.

If not there you can refer to the UGC model syllabus https://www.ugc.ac.in/ugc_notices.aspx?id=MTA3Nw==

	Semester I
Course Title	Algebra
Course Code	MTMP COR 01T Credit 4
Course Outcome	 On completion of this course, the students will be able to identify, analyze, classify, demonstrate and explain the acquired knowledge mainly on the following : Sylow's theorems and its applications, Jordan Holder Theorem, Solvable groups Prime, primary and maximal ideals Jacobsons radical, semisimple ring, Hilbert Basis Theorem, Unique Factorization Domain, Basics of Field extension & Galois theory. Also there is a scope, for applying the acquired knowledge of the above methods/ tools of Algebra, to solve complex mathematical problems in all of its relevant fields of applications, to develop abstract mathematical thinking as well as in discovering new avenues, that facilitates for higher research and its extensions. It also helps to crack lectureship and fellowship exams approved by UGC & CSIR, GATE and SET.

Scheme of Instruction							
Total Durati	otal Duration6Class/Week4MonthsMonths			4		Hours/week	4
Instruction I	Mode	Lecture		L			I
		Schen	ne of Examina	tion			
Maximum S	core	50	Internal	10		End Semester	r 40
		С	ourse Mapping	5			
Units		Course	Content		Le	cture Hour (Cur	nulative)
I (July- August)	equation, p theorem fo theorems an finitely gen	Cayley's theorem. Conjugacy classes and class equation, p-groups. Converse of Lagrange's theorem for finite abelian groups. Sylow's theorems and its applications. Direct product, finitely generated abelian groups. Solvable groups –solvability of Sn, Jőrdan-Holder Theorem.					
II (August- Sep.)	ring, isomor theorems. Pr primary and characteriza and irreduci	leals, Principal Ideal Domain (PID). Quotient ng, isomorphism and correspondence leorems. Prime, rimary and maximal ideals – examples, naracterizations and their interrelations. Prime nd irreducible elements. Unique Factorization romain (UFD).					
III (September- Oct.)	and Artiniar	i rings. Polyi e Ring, Jacol	ons – Noetherian r nomial ring, bson's radical, Hi	e	16		

IV (OctNov.)	Field extension – algebraic and transcendental extension. Splitting field, algebraic closure and algebraically closed field . Separable and normal extension. Galois field.	16
V (NovDec.)	Galois theory (If time permits) – introduction, basic ideas and results focusing the fundamental theorem of Galois theory. Solvability by radicals.	16

	Semester	Ι	
Course Title	Linear Algebra		
Course Code	MTMP COR 02T	Credit	4
Course Outcome	 On completion of this co analyze, classify, demons on the following : i) Modules with chain c Modules, Free Modules, ii) Dual Spaces, Dual Bas iii) Minimal Polynomial, Triangular Forms, iv) Jordan Canonical Forms, iv) Jordan Canonical Form, v) Bilinear Forms, Quada vi) Direct sum decompose vii) Sylvester Law Of Ine Forms. 	strate and explain the onditions(Noetherian sis, Dimension of Qu Diagonalization of N orms, Rational Can ratic Forms, Hermitia ition theorem, Pricip	e acquired knowledge n and Artinian), Dual otient space, Matrices, Reduction to nonical Forms, Smith an Forms, al Minor Criteron,

	Scheme of Instruction							
Total Duration		6	Class/Week	4		Hours/week	4	
		Months						
Instruction Mo	de	Lecture						
		Sche	me of Examin	ation				
Maximum Scor	·e	50	Internal	10		End Semeste	r 40	
		C	Course Mappin	ng				
Units		Cours	se Content		Le	cture Hour (Cu	mulative)	
I(July)	Quotien Corresp four le Module chain co Dual I Theorer	Modules, Basic Concepts, Submodules, Quotient Modules, Isomorphisim Theorems, Correspondence Theorem, Exact Sequence, Your lemma and five lemma, Simple Modules, Free modules, Modules with chain conditions(Noetherian and Artinian), Dual Modules, Fundamental Structure Theorem for Fintely Generated Modules over PID- Statement only.				16		
II(August)	between by Ma Function	es and Linear Transformations, 16 entation of Linear Transformations n finite dimensional vector spaces atrices and vice versa, Linear nals, Dual Spaces, Dual Basis, sion of Quotient space.						
III (SepOct.)		nials, Diago on to Tria	omial, Charac onalization of M angular Forms, Canonical			32		

	Determinant divisors and Invariant Factors, Rational Canonical Forms, Smith Normal Form Over an Euclidean Domain.	
IV(Nov-Dec)	BilinearForms,QuadraticForms,HermitianForms,PositveDefiniteHermitianForms &its Direct sumdecompositiontheorem,decompositiontheorem,PricipalMinorCriteron,Signature,SylvesterLawOfInertia,SimultaneousReduction of Pair of Forms.	32

	Ş	Semester		Ι
Course Title	Real An	alysis:		
Course Code	MTMP	COR 03T	Credit	4
Course Outcome	-	-		ent will be able to nd improve the logical
	Sche	eme of Instruc	ction	
Total Duration	6 Months	Class/Week	4	Hours/week 4
Instruction Mode	Lecture			

Scheme of Examination								
Maximum S	core 50 Internal 10		10	End	d Semester	40		
		C	ourse Mappin	g				
Units		Course	Content		Lecture	e Hour (Cumu	lative)	
I (July- August)	Functions of basic prope decomposition Nature of po and negative	rties, Lipsc on, Nature of ints of non-o		24				
II (August- Sep.)	measure, cou sets and their definition of Measurable f	The Lebesgue measure: Lebesgue Outer measure, countability, subadditivity, measurable sets and their properties, non-measurable sets, definition of Lebesgue measurable. Measurable functions: Definition on a measurable set in R and basic properties, Simple Functions.						
III (September- Oct.)	basic propert absolutely co subclass of a Characteriza function in te almost every	ies, Deduction ontinuous fur Il functions of tion of an ab erms of its de where, proper ontinuous fur	nctions: Definiti on of the class of actions as a prope of bounded varia solutely continue erivative vanishin erty (N), every action possesses	`all er tion; ous ng				
IV (OctNov.)	Differentiation on R ⁿ :Functions from R ⁿ to R ^m , 16 projection functions, component functions, scalar and vector fields, open balls and open sets, limit and continuity. Derivative of a scalar field with respect to a vector, directional derivatives and partial derivatives, partial derivatives of higher order, Chain rule,Frechet derivative, matrix representation of							

	derivative of functions, continuously differentiable functions, Implicit function theorem, inverse function theorem.	
V (Nov-	Integration on \mathbb{R}^n : Integral of f: $\mathbb{A} \to \mathbb{R}$ when $\mathbb{A} \subset \mathbb{R}^n$ is a closed rectangle. Conditions of integrability.	16
Dec)	Integrals of f: $C \rightarrow R$, $C \subset R^n$ is not a rectangle, concept of Jordan measurability of a set in R^n . Fubini's theorem for integral of f: $A \times B \rightarrow R$, $A \subset R^n$, $B \subset R^n$, are closed rectangles. Fubini's theorem for f: $C \rightarrow R^n$, $C \subset A \times B$. Formula for change of variables in an integral in R^n .	

	Semester						
Course Title							
Course Code		Credit					
Course Outcome							
	Scheme of 1	Instruction					
Total Duration	Class/W	eek He	ours/week				
Instruction Mode							
	Scheme of Examination						

Maximum Sc	ore	Internal		End Semester			
Course Mapping							
Units	Course Content Lecture Hour (Cu			ecture Hour (Cumu	lative)		

	Semester	Ι	
Course Title	Complex Analysis		
Course Code	MTMP COR 04T	Credit	4

Course Outcome	analyze, c	On completion of this course, the students will be able to identify, analyze, classify, demonstrate and explain the acquired knowledge mainly on the following :				
	· •	i) Stereographic Projection, Riemann's sphere, point at infinity, extended complex plane,				
		-Goursat Theoren theorem, Liouvill	•	y's integral formulas, em,		
		nental theorem of Maximum Modu		algebra, Schwarz Ref ple,	flection	
	iv) Cauchy theorem,	-Hadamard Theo	rem, Tay	lor's theorem and Lau	rent's	
	v) Rieman	n's Removal sing	ularity th	orem, Weierstrass-Ca	sorati,	
	vi) The Cauch's Residue Theorem, Argument principle and their applications,					
	vii) Confor	rmal mapping, Bi	linear trar	nsformation, Idea of a	nalytic	
	continuati	on.				
	Sche	eme of Instruc	tion			
			4		4	
Total Duration	6	Class/Week	4	Hours/week	4	
	Months					
Instruction Mode	Lecture		<u> </u>			
	Scher	ne of Examina	ntion			
Maximum Score50Internal10End Semester40					40	
	С	ourse Mappin	g			
Units	Course	Content		Lecture Hour (Cum	ulative)	

I (July- August)	Algebraic, Geometric and analytic preliminaries of complex numbers. Stereographic Projection, Riemann's sphere, point at infinity and its deleted neighbourhood, the extended complex plane.	24
II (August- Sep.)	Functions of a complex variable, Its Limit, Continuity and Differentiability. Analytic functions, Cauchy- Riemann equations. Branch of Logarithm, Complex integration, Winding Number or Index of a closed curve, The Cauchy-Goursat Theorem, its homotopic version (if time permits) and consequences. Cauchy's integral formula. Cauchy's integral formula for derivative, Morera's theorem, Cauchy's inequality, Liouville's theorem. Fundamental theorem of classical algebra, Schwarz Reflection Principle,.	24
III (September- Oct.)	Gauss's Mean Value Property, Maximum Modulus Theorem. Power series, The Cauchy- Hadamard Theorem, Analyticity of Power Series, Weierstrass theorem on Uniformly convergent series of analytic functions, Uniqueness Theorem. Taylor's theorem and Laurent's theorem, Zeros of an analytic function.	16
IV (OctNov.)	Classification of Singularities, Riemann's Removal singularity thorem, Weierstrass- Casorati theorem, Limit points of zeros and poles, Classification of Singularities at infinity.	16
V (Nov- Dec)	Calculus of residues, The Cauch's Residue Theorem. Argument principle, Rouche's theorem and Hurwitz's Theorem, Evaluation of definite integrals using residue theorem. Conformal mapping, Bilinear transformation, Idea of analytic continuation.	16

	S	emester		Ι		
Course Title	Mechani	CS				
Course Code	MTMP (COR 05T	Credit		4	
Course Outcome		s will be able y the problems			ns of motic	on to solve
	single part force fields	icle/a system s.	of particle or	rigid bo	dy under co	onservative
	2. Use the of a system	Hamilton's pr 1.	inciple for de	eriving th	ne equations	s of motion
		owledge of Ha ew of mechan	•	stem and	phase plane	es from the
		theory of nor and vibration		or solvir	ng problems	related to
		s will learn t r further studi				
	Scl	neme of Ins	truction			
Total Duration	6 Months	Class/Wee	k 4	Ηοι	ırs/week	4
Instruction Mode	Lecture					

	Scheme of Examination						
Maximun	n Score	50	Internal	10		End Semester	40
		(ing	1		1	
Units		Course (Content		Le	ecture Hour (Cumu	lative)
I(July)	orbits. Syste ordinates. (holonomic, s of Virtual Lagrange's Nonholonomi Motion. Ener	of ervation prin energy. Cer em of parti Constraints, schleronomic Work. D equations ic Systems. gy Equation	Motion fo ciples. ntral forces and icles. Generalise	central ed Co- pilateral, principle rinciple. ic and ation of e Fields.	16		
II (August)	Variations. H Lagrange's E Principle. Pri Motion. Noet Dynamical s conservative Euler's Theo it. Euler's D symmetric to angles. Moti gravity. Stabi	lamilton's Pr quations of I nciple of Lea ther's Theore systems. Li flow. Moti rem. Motion Dynamical E op in absen ion of a S lity of Stead		on's and milton's stants of n Laws. em for Body. Point in on of a Eulerian	16		
III(Sep Oct.)			ns. Generating ket. Jacobi's Ide	ntity.	32		

	Theorem. Jacobi-Poisson Theorem. Hamilton-Jacobi Partial Differential Equation. Jacobi's Theorem. Hamilton's Principal Function. Hamilton's Characteristic Function. Action Angle Variables. Adiabatic Invariance.	
IV (Nov- Dec)	Theory of Small Oscillations (Conservative System). Normal Co-ordinates. Oscillations under Constraints. Stationary Character of Normal Modes. Special Theory of Relativity. Galilean Transformation and the Speed of light. Lorentz Transformation. Time dilation and length contraction. Consequences. Velocity and acceleration transformation.4 – vectors. 4-velocity.4-acceleration.4momentum.Relativistic mass. Momentum and energy conservation inn STR.Collision.4-force.	32

	Semester	I		
Course Title	Computational Techniques and Introduction to LaTeX			
Course Code	MTMP AEC	Credit	2	
	01M			
Course Outcome	At the end of this cou	rse a student should be al	ple to :	
	• understand the purpose of basic computer programming language,			
	• understand and apply control statements, implementation of arrays, functions, etc.,			
	• enhance ability to program writing skills for solving several real life and Mathematical problems,			
	• use LaTeX and d	evelop typeset docume	nts containing tables,	

		figures, formulas, common book					
		elements l	ike bibliographie	s, indexes	s etc. and	l modern PDF	features.
		Sc	heme of Instru	uction			
Total D	uration	6	Class/Week	4	H	ours/week	4
		Months					
Instruct	Instruction Mode Practical						
		Sch	eme of Exami	nation			
Maximu	im Score	50	Internal	40	E	nd Semester	10
			Course Mapp	ing			
Units		Course (Content		Lectu	re Hour (Cun	nulative)
I (July)			racter set. Consta vords, expression,			16	
	assignment statements, declaration. Arithmetic, relational and logical operators. Conditional						
	operators.						
II	Decision making : if statement, if-else statement					16	
(Aug.)		Nesting if statement, switch statement, break and					
	continue staten	nent, the Go	oto statement.				
	Control Stater	nents : W	hile statement, d	lo-while			

	statement, for statement.	
III (Sep Oct.)	 Arrays : One-dimension, two-dimension and multidimensional arrays, declaration of arrays, initialization of one and multi-dimensional arrays. Functions : Function declaration, Library and User defined function, Function argument. Recursion. Programming problems for all sections above (Separate and Combined). 	32
IV (Nov- Dec)	LaTeX Document structure, Formatting text, math formulas and expressions, equations, tables, graphics, index, cite books, bibliography, Beamer presentation.	32

	Semester	I	I
Course Title	Тороlogy		
Course Code	MTMPCOR06T	Credit	4
Course Outcome	 analyze, classify, demonstrate and expl i) Axiom of choice, numbers, ii) Basics of homeomorphism and 	is course, the students w ain the acquired knowled Continuum hypothesis, Topological spaces, topological properties, hods of defining a to perator, interior	ge on the following : Cardinal and Ordinal Relative topology,

operator and neighbourhood systems,								
		operator a	na neighbournoo	1 systems	5,			
		iv) Counta	bility axioms, He	einei's co	ntinu	ity criterion,		
		v) Produc	t and box topolog	gy, Tycho	onoff j	product theorem,	,	
		vi) Overlient mees Level Connectedness Deth connectedness				adnass		
		vi) Quotient spaces, Local Connectedness, Path- connectedness,				euness,		
		Total disconnectedness						
		Scl	heme of Instru	iction				
Total Du	ration	6	Class/Week	4		Hours/week	4	
1 otal Du	Iration	-	Class/ week	4		HOULS/WEEK	4	
		Months						
T ()		T 4						
Instructi	ion Mode	Lecture						
		Sch	eme of Exami	nation				
Maximu	m Score	50	Internal	10		End Semester	r	40
			Course Mappi	ing				
				0				
Units		Course C	Content		Lee	cture Hour (Cu	mu	lative)
I (Jan)	Brief Descripti	f Description: Countable and uncountable sets. 16			16			
	-	Axiom of choice and its equivalence. Cardinal				10		
	numbers. Schroeder-Bernstein theorem.							
	Continuum hypothesis. Zorn's lemma and well-							
	ordering theorem.							
	Ordinal Numbers. The first uncountable ordinal.							
	Topological s	paces, Oper	and Closed sets,	Bases				
	and sub-ba	ses. Closur	e and Interior – th	neir				
	properties a	nd relations	; Exterior, Bound	lary,				

	Accumulation points, Derived sets, Adherent point, Dense set, Gδ and Fσ sets. Neighboourhoods and neighbourhood system.	
II (Feb.)	Alternative methods of defining a topology in terms of Kuratowski closure operator, interior operator, neighbourhood systems. Subspace and Induced or Relative topology. Relation of closure, interior, accumulation points etc. between the whole space and the subspace. Continuous, open and closed maps, pasting lemma, homeomorphism and topological properties.	16
III (March)	 1st and 2nd countability axioms, Separability, Lindeloffness and their relationships. Characterizations of accumulation points, closed sets, open sets in a 1st countable space w.r.t.sequences .Heinei's continuity criterion . Ti spaces(i = 0, 1, 2, 3, 3½, 4, 5), their characterizations and basic properties. Urysohn's lemma and Tieze' extension theorem (statement only) and their applications. 	16
IV (April)	Connected and disconnected spaces. Connectedness on the real line. Components and quasi-components. Compactness, its basic properties and characterizations, Alexander subbase theorem, Continuous functions and compact sets, Compactness and separation axioms . Equivalence of compactness, countable compactness and sequential compactness in metric spaces.	16
V (May-	Product and box topology, Projection maps. Tychonoff product theorem. Separation and product spaces. Connectedness and product spaces.	32

June)	Countability and product spaces.	
	Identification topology and Qutient spaces.	
	Local Connectedness, Path- connectedness, Total disconnectedness, Zero -dimensional spaces, Extremally disconnected spaces.	

		Semester		II	
Course Title	Functio	nal Analysis			
Course Code	MTMP	COR 07T	Credit	4	
Course Outcome	appreciate spaces, th Moreover	On successful completion of this course, students will be able to appreciate howfunctional analysis uses and unifies ideas from vector spaces, the theory of metrics, and complex analysis. Moreover, students will be able to understand and apply fundamental theorems from the theory of normedand Banach spaces, Hilbert spaces.			
	Sc	heme of Instr	uction		
Total Duration	6	Class/Week	4	Hours/week	4
Total Duration	6 Months	Class/Week	4	Hours/week	4
Total Duration Instruction Mode			4	Hours/week	4
	Months Lecture			Hours/week	4
	Months Lecture			Hours/week	

Units	Course Content	Lecture Hour (Cumulative)
I (Jan)	Metric spaces, Brief discussions of continuity, completeness, compactness, connectedness. Hölder	16
	and Minkowski inequalities (statement only).	
	Baire's category theorem, Banach's fixed point theorem and its applications to solutions of certain	
	systems of linear algebraic equations, Picard's existence theorem on differential equation, Implicit function theorem and Fredholm's integral equation of the second kind, Kannan's fixed point theorem.	
II (Feb)	Real and Complex linear spaces. Normed induced metric. Banach spaces, the spaces Rn, Cn, C [a,	16
	b], C ₀ , C, lp(n)($1 \le p \le \infty$), lp($1 \le p \le \infty$) and [,] $_2Lab$. Riesz's lemma. Finite dimensional normed linear spaces and subspaces, completeness, compactness criterion, Quotient space, equivalent norms and its properties.	
III	Bounded linear operators, various expressions for	16
(March)	its norm. Spaces of bounded linear operators and its completeness. Inverse of an operator. Linear and sublinear functionals, Hahn-Banach theorem for real linear spaces, complex linear spaces and normed linear spaces and some of its simple applications.	
IV	Conjugate or Dual spaces, Examples, Separability of the Dual space. Reflexive spaces, weak and	16
(April)	weak* convergence. Uniform boundedness principle and its applications. The Open mapping Theorem and the Closed graph Theorem.	
V(May-	Inner product spaces and Hilbert spaces, examples of Hilbert spaces, continuity of inner product, CS	32

June)	inequality, basic results on Inner product spaces	
	and Hilbert spaces, parallelogram law, Pythagorean	
	law, Polarization identity, orthogonality,	
	orthonormality, orthogonal complement. The Riesz	
	representation theorem, Bessel's inequality.	
	Convergence of series corresponding to orthogonal	
	sequence, Fourier coefficient, Perseval identity.	
	Riesz- Fischer Theorem.	

	Se	emester		II			
Course Title	Ordinary	Ordinary Differential Equations and Special Functions					
Course Code	MTMP C	OR 08T	Credit	4			
Course Outcome	and Picard'		roximation.	nd uniqueness o This can be direc			
		lge of the propo ul in studying M	-	nvalues and eige hysics.	enfunctions		
	-	-		s will be useful f anics or theoretics			
	-	-		s will be useful f anics or theoretics			
	utilised by	5. Introductory ideas of phase plane analysis and stability can be utilised by students while studying dynamical systems or mathematical biology.					
	areas of physics.						
Scheme of Instruction							
Total Duration	6 months	Class/Week	4	Hours/week	4		

Instruction	n Mode	lecture							
Scheme of Examination									
Maximum	Score	50	Internal	10		End Semester	40		
			Course Mapp	ing			1		
Units		Course	Content		L	ecture Hour (Cumu	lative)		
I (Jan)	existence an order initia existence th method of Lindeloeff Dependence initial value for systems	d uniquenes l value pr eorem. Lipse successive a theorem. Co on paramete . Existence a of first ord	Well-posed pr oblem .Cauchy chitz condition. I approximations. ontinuation of s ers and on and uniqueness ther differential equ	the first Peano Picard's Picard- olution.					
II (Feb)	Theory of Linear systems and n th order linear ODE. System of linear homogeneous and non- homogeneous differential equations Fundamental matrix. Exponential matrix function and their properties Method of solving systems of linear ordinary differential equations by fundamental matrix and exponential matrix function. Equations with constant coefficients and periodic coefficients.								
III (March)	Method of v Linear Au Analysis, E	rariation of p tonomous quilibrium I	y differential eq arameters. System, Phase Points, Classifica ablility of equ	Plane ation of					

IV (April)	Adjointandself-adjointlineardifferentialequations:Abel's identity, oscillatory solutions.Sturm's separation and comparison theorems.Eigenvalueproblems, Sturm – Liouvilleproblem,solutionbyGreen's function.EigenvaluesandEigenfunctions.Properties.FourierSeriesexpansionnterms of eigenfunctions.	
V(May- June)	 Special Functions: Concepts of ordinary and singular points of a second order linear differential equation in a complex plane, Fuch's theorem, Solution at an ordinary point, Regular singular point, Frobenius Method, Solution at a regular singular point, Series solutions of Legendre and Bessel equations. Legendre polynomial: Generating function, Schlaffli'sintegral,Rodrigue's formula, recurrence relations, orthogonality property, expansion of a function in a series of Legendre polynomials. Bessel function and its properties. 	

	Semester	I	l
Course Title	Gr. A - Numerica Transforms	l Analysis ; Gr. B - I	ntegral
Course Code	MTMP COR 09T	Credit	4
Course Outcome	1	ne course, the student is e cories of numerical analys	1

	 formulate and solve numerically problems from different branches of science, grow insight on computational procedures, learn theory and properties of Fourier transform, Laplace Transform and Z-Transform and their applications to relevant problems. 						
Total Du	uration	6	Class/Week	4	Hours/week	4	
		Months					
Instruct	ion Mode	Lecture		1			
		Sch	eme of Exami	nation			
Maximu	m Score	50	Internal	10	End Semester	r 40	
			Course Mapp	ing			
Units		Course	Content		Lecture Hour (Cu	mulative)	
I (Jan)	Numerical Solution of System of Linear Equations:16Triangular factorisation methods, Iterative methods16:Jacobi method, Gauss-Seidel method and GaussJacobi method and their convergence ,diagonaldominance, Successive-Over Relaxation (SOR)method, Ill- conditioned matrix.Eigenvalues and Eigenvectors of Real Matrix:Power method for extreme eigenvalues andcorresponding eigenvectors, Gerschgorin's circletheorem. Solution of Non-linear Equations:Newton-Raphson and secant method , rate ofconvergence , General iterative method for the						

	<pre>system : x = g(x) and its convergence. Non-Linear Systems of Equations: Newton's method</pre>	
II (Feb)	PolynomialInterpolation:Weirstrass'sapproximationtheorem (Statement only), Hemiteinterpolation, Cubic splineinterpolation.	16
	Numerical Integration: Newton-Cotes formulae, Romberg integration.	
	Numerical Solution of PDE : Finite Difference Methods, Heat equation, Crank-Nicolson method, five point formula for solving Laplace and Poissionequations. Wave equation: Explicit and Implicit method of solving Cauchy problem.	
III	The Fourier Transform:	16
(March)	Fourier Integral Theorem. Derivation of Fourier transform from Fourier series, Properties of Fourier	
	transform, Convolution, Transform of derivatives.	
IV	Fourier cosine and sine transforms. Inverse Fourier	16
(April)	transform. Parseval's Identity. Finite Fourier Transform. Application to solving ordinary and partial differential equation.	
V(May-	The Laplace transform:	32
June)	Definition and properties. Sufficient conditions for the existence of Laplace Transform. Transform of	
	derivatives. Convolution theorem. Inversion of Laplace Transform. Evaluation of inverse transforms by residue. Initial and final value theorems. Heaviside expansion theorem. Applications of Laplace	
	transform.	

The Z-Transform:Definition and properties. Z-
transform of some standard functions. Inverse Z-
transforms. Applications.

	Semester		П			
Course Title	Differentia	Manifold				
Course Code	MTMP CO 10T	R Cre	edit	4		
Course Outcome	analyze, class	On completion of this course, the students will be able to identify, analyze, classify, demonstrate and explain the acquired knowledge mainly on the following t				
	 ii) vector field iii) multilinear iv) Lie groups v) Integration group, 	 i) tangent and cotangent spaces; submanifolds, ii) vector fields and their flows; the Frobenius Theorem, iii) multilinear algebra, differential forms, the Lie derivative, iv) Lie groups and Lie algebras, v) Integration on manifolds, theorems of Stokes, integration on a Lie 				
	Schen	ne of Instru	uction			
Total Duration	6ClMonths	ass/Week	4	Hours/week	4	
Instruction Mode	Lecture					

	Scheme of Examination								
Maximu	m Score	50	Internal	10	End	Semester	40		
	Course Mapping								
Units		Course C	ontent		Lecture	Hour (Cumu	ılative)		
I (Jan)	second countab	ility and Ha s; submanifo	sic notions; the e usdorffness; tang olds; consequence	ent and	16				
II (Feb)	Vector fields and Theorem; Sard's Differential form	s theorem.	the Frobenius r algebra; tensors;		16				
III (March)	behaviour under	Differential forms; the de Rham complex and its behaviour under differentiable maps; the Lie derivative; differential ideals.							
IV (April)	Lie subgroups; o map; closed s	coverings of I ubgroups; th	algebras; homomo Lie groups; the exp le adjoint repres	onential	16				
V(May- June)	homogeneous manifolds.								

Semester	II

Course Title	Compute	Computer Aided Numerical Analysis using C/ Matlab/				
	Mathema	Mathematica:				
Course Code	MTMP S	EC Ci	edit	4		
	01M					
Course Outcome	At the end c	of this course a	student shoul	d be able to :		
	• solve diffe	erent type of n	umerical probl	ems,		
	• understand	d better releva	nt theoretical c	concepts,		
		ogramming si ystem, physica		disciplinary area	s such as	
	• analyze data set of various size and interpret outcomes helping her/him to compete in the financial					
	her/him to c	compete in the	financial			
	her/him to c sector.	compete in the	financial			
	sector.	-		cs animation, co	mputerized	
	sector.	-		cs animation, co	mputerized	
	sector. • apply pro abstract art.	-	ills in graphi	cs animation, co	mputerized	
Total Duration	sector. • apply pro abstract art. Scho	ogramming sk	ills in graphi uction	cs animation, co Hours/week	mputerized	
Total Duration	sector. • apply pro abstract art. Scho	ogramming sk eme of Inst	ills in graphi uction			
Total Duration Instruction Mode	sector. • apply pro abstract art. Sch 6	ogramming sk eme of Inst	ills in graphi uction			
	sector. • apply pro abstract art. Sch 6 Months Lecture	ogramming sk eme of Inst	ills in graphi •uction 4			
	sector. • apply pro abstract art. Sch 6 Months Lecture	ogramming sk eme of Instr Class/Week	ills in graphi •uction 4		4	
Instruction Mode	sector. • apply proabstract art. Scher 50	ogramming sk eme of Instr Class/Week me of Exan	ills in graphi	Hours/week	4	

I (Jan)	Cubic spline interpolation Gauss Elimination Method for a System of Linear Equations.	16
II (Feb)	Newton's Method for a System of Nonlinear Equations. Inverse of a matrix.	16
III	Integration by Romberg's method.	16
(March)	Largest Eigen values of a real matrix by power Method.	
IV (April)	Numerical Solutions of Ordinary Differential Equations for Initial Value Problems : (a) Picard's Formula, (b) Adams-Bashforth method, (c) Milne's predictor–corrector method.	16
V(May- June)	Finite Difference Method for PDE – Elliptic Type PDE, Parabolic Type PDE, Hyperbolic Type PDE.	32

	Semester	II	I	
Course Title	Partial Differential Equations and Calculus of Variations			
Course Code	MTMP COR 11T	Credit	4	
Course Outcome	At the end of this course a student should be able to :			
	• learn to solve different types of PDE,			
	• test the stability of the solution,			
	• apply PDE to problems of geometry and physics,			
	• understand basic theor	ies of calculus of varia	utions,	

		• formulate and solve problems from allied branches of science.				
	Scheme of Instruction					
Total Dur	ation	tion 6 Class/Week 4 Months 4				4
Instructio	n Mode	Lecture				1
		Sch	eme of Exami	nation		
Maximum	Score	50	Internal	10	End Semeste	r 40
			Course Mappi	ng		
Units		Course	Content		Lecture Hour (Cu	mulative)
I(July)	Origins of Linear and n characteristi method. Second orde coefficients. Classificatio	on-linear P cs ,Charpi er PDE wit Reduction t	ethod of Jacobi's variable	16		
II (August)	Well-posed and ill-posed problems. Non linear PDE of second order.Wave equation: vibrations of strings, D'Alembert's solution, Riemann's method, Solution by separation of variables, Transverse vibrations of membranes.				16	
III(Sep Oct.)	Laplace Equation: Equipotential surfaces, 32 Boundary value problems, Maximum-minimum principles, The Cauchy problem, Stability of the					

	solution. Theory of Green's function. Diffusion equation: Boundary value problems, variables separable solution. Duhamel's Principle. Solution of linear partial differential equations by Lie algebraic method.	
IV (Nov- Dec)	Linear functional, Euler equation, The Brachistochrone problem: Cycloid, Geodesic, Several dependant variables : Lagrange's equations, Isoperimetric problem, Variational problems : parametric form , with moving boundaries, least action principle.	32

	Semester			II	I	
Course Title	Nonlinear Differ Systems:	entia	l Equation	s and	Dynamic	al
Course Code	MTMP COR 127	Γ (Credit		4	
Course Outcome	 On the completion of this course students will be able to study the nature linear stability and general stability of critical points and solutions ; also investigate the existence of periodic solutions ; and identify a bifurcation through change of parameters ; further, have a basic idea of perturbation methods. These methods can be applied by the students to study problems of population biology and nonlinear wave propagation. 					
	Scheme of Instruction					
Total Duration	6 Class/W	eek	4	Hou	ırs/week	4

		Months					
Instruction	n Mode	Lecture					
	Scheme of Examination						
Maximum	Score	50	Internal	10	End	Semester	40
		(Course Mappi	ing			
Units		Course	Content		Lecture I	Hour (Cumi	ılative)
I(July)	System of C Plane An Classification equilibrium systems. Flo Fixed poin asymptotic critical point	nalysis, n of equilibr points. N w diagram, ts and th stability, l	Points, lility of nomous		16		
II (August)	Conservative Index of an infinity. Th Homoclinic and other clo	equilibrium ne phase and heterocl	ndex at infinity.		16		
III(Sep Oct.)	limit cycles. Nearlyperiod Harmonic ba Perturbation Peridic sol	ging methods. Energy balance method for reles. Amplitude and frequency estimates. periodic solutions. Periodic solutions and nic balance method. ation methods for Duffing;s equation. solution of autonomous systems. dst's method. Singular perturbation. lls method.					
IV (Nov-	Solutions a	nd paths,	d Lyapunov s linear systems systems. The e			32	

Dec)	of periodic solutions. The Poincare Bendixson theorem.	
	Simple bifurcations. The saddle-node, transcritical and pitchfork bifurcation. Hopf bifurcation.Manifolds. Stable Manifold and Centre manifold theorem.	

	S	emester		IJ	Ι	
Course Title	Gr. A-El	ectromagn	etic The	ory ; Gr.]	B- Integra	ıl
	Equation	18:				
Course Code	MTMP	C OR 13T	Credit		4	
Course Outcome	After com	pleting this co	ourse, the s	tudent will	be able to:	
	• build u mathemati	p strong a cs,	pplication	capability	of gradu	ate level
	• understar	nd and apply	the basic th	eories of el	ectromagnet	tism,
	• get an ex	posure to the	Einstein's	Theory of I	Relativity,	
	• grow inte	erest in electri	cal engine	ering,		
	• distinguish between differential and integral equations,					
	• understand the theory of existence and uniqueness of solutions of linear integral equations,					
	• find solutions of linear integral equations of first and second type (Volterra and Fredhlom) and					
	singular integral equations using several techniques.					
	Sch	eme of Ins	truction			
Total Duration	6	Class/Wee	k 4	Ho	urs/week	4

		Months					
Instruction	n Mode	Lecture		1			
	Scheme of Examination						
Maximum	Score	50	Internal	10	End	Semester	40
		(Course Mappi	ing			
Units		Course	Content		Lecture I	Hour (Cumi	ılative)
I(July)	Divergence Gauss' law Laplace e Conductors. Polarization, Dielectrics. Magnetostatic currents, Bic of B, C Ma Fields in Ma Ampere's La and Nonlinea	and Curl of Electric P quation, Electric Electric ics: Lorentz ot-Savart Lav agnetic Vec atter: Field of aw in Magn ar Media.	Fields in Displacement, z Force Law, w, Divergence a tor Potential. N of a Magnetized netized Material,	Fields, on and Energy, Matter: Linear Steady nd Curl fagnetic Object, Linear		16	
II (August)	Maxwell's Continuity Newton's Maxwell's Momentum. and Matter, Dispersion, Lorenz Gau radiation, electrodynam	Equations. Equation, Third Law Stress Ter Electromage Fresnel's eq Guided Wav ge, Jefimen Radiation nics : Einste	in Electrody nsor, Conservat netic Waves in V uations, Absorpt es. Coulomb Ga ko's Equations,	Laws, heorem. mamics, tion of Vacuum tion and uge and Dipole ativistic Lorentz		16	

	phenomenon, Field transform, Field tensor, Relativistic potential.	
III(Sep Oct.)	Definition of Integral Equation and their classification. Reduction of differential equation to integral equation and vice-versa. Eigen values and Eigen functions. Existence and uniqueness of solutions of Fredholm and Volterra integral equations of second kind. Solution by the method of successive approximations, series solution. Iterated kernels.	32
IV (Nov- Dec)	Reciprocal kernels. Neumann series. Solution of integral equations with separable kernels. Solution of Volterra integral equation of first kind. Fredholm theorems and Fredholm Alternative. Hilbert-Schmidt theory of integral equations for symmetric kernels. Singular Integral equation, Solution of Abel's Integral equation. Solution of Volterra equation of convolution type by Laplace transform.	32

	Semester	II	I
Course Title	Measure and Integration		
Course Code	MTMP COR 14T	Credit	4
Course Outcome	 i.) Lebesgue measure, Vitali's theorem concerning existence of non-measurable sets, ii) measurable functions, Theorem relating to non negative μ-measurable function as a limit of a monotonically increasing sequence of non negative simple μ-measurable functions, iii) Lebesgue's monotone convergence theorem and its applications, Fatou's lemma, Lebesgue's dominated convergence Theorem, iv) Interrelation between Riemann & Lebesgue integration, 		

		v) Concept of L _p -spaces and its completeness,				
		 v) Concept of Ep-spaces and its completeness, vi) Characterizations of Convergence in Measure, Almost Uniform Convergence, Egoroff theorem, vii) Product Measure. Fubini's Theorem, viii) Signed Measure and the Hahn Decomposition, Radon-Nikodym Theorem. 				
		Scl	neme of Instru	ction		
Total Dura	ation	6	Class/Week	4	Hours/week	4
		Months				
Instruction	n Mode	Lecture				
		Sch	eme of Exami	nation		
Maximum	Score	50	Internal	10	End Semeste	r 40
Course Mapping						
			Course mappi			
Units			Content	•• 5	Lecture Hour (Cu	mulative)

II (August)	 Properties of Lebesgue measure, Vitali's theorem: The existence of an non-measurable set in the Euclidean line . The Borel sets & Lebesgue measurable sets- a comparison μ-measurable functions, their properties; Characteristic functions, Simple functions. Theorem relating to the non negative μ-measurable function as a limit of a monotonically increasing sequence of non negative simple μ-measurable functions. 	16
III(Sep Oct.)	Lebesgue Integration : Integration for simple functions and for Extended real valued μ - measurable functions; The countable additivity of the set of function vfon M defined by vf(M) = $\int_M f$, for each set $M \in \mathbf{M}$, the $\boldsymbol{\sigma}$ - algebra of μ - measurable sets, for a nonnegative μ -measurable function f; Lebesgue's monotone convergence theorem and its applications, Fatou's lemma, Lebesgue's dominated convergence Theorem. Necessary & Sufficient condition of Riemann integrability via measure; interrelation between the two modes of integration.	32
IV (Nov- Dec)	 The Concept of L_p-spaces; Inequalities of Holder and Minkowski; Completion of L_p-spaces. Convergence in Measure, Almost Uniform Convergence, Pointwise Convergence a.e and their Characterizations; Convergence Diagrams, Counter Examples. Egoroff theorem. Lebesgue Integral in the Plane. Product σ- algebra. Product Measure. Fubini's Theorem. If time permits :Signed Measure and the Hahn 	32

]	Decomposition; The Jordan Decomposition. The	
]]	Radon-Nikodym Theorem.	

		\$	Semester		III	
Course Tit	le	Magneto-	hydrodynam	ics		
Course Co	de	MTMP DS	SE 01T	Credit	4	
Course Ou	itcome	At the end	of this course	e a student sl	nould be able to :	
		• describe	the properties	s of Magneto	-hydrodynamic eo	quations,
		• explain I	MHD waves,			
		• apply the MHD equations to a number of astrophysical problems as well as to problems related to laboratory				
		phy	ysics.			
		Scł	neme of Ins	truction		
Total Dura	ation	6	Class/Wee	k 4	Hours/we	ek 4
		Months				
Instruction	n Mode	Lecture				
		Sch	eme of Exa	mination		
Maximum	Score	50Internal10End Semester40				
			Course Ma	pping		
Units		Course Content Lecture Hour (Cumulative)				

I(July)	Basic ideas of electro-magnetic fields, basic laws. Maxwell's equation,- in vacuum , in matter, physical significance, boundary conditions ; Energy transfer and Poynting theorem.	16
II (August)	Equation of motion of a conducting fluid, simplification of MHD equations using dimensional consideration (i.e. MHD approximations), magnetic Reynold's number, Alfven's theorem, the magnetic body force, Ferraro's law of isorotation, Non-dimensional form of the equation.	16
III(Sep Oct.)	Steady laminar flow of a viscous conducting fluid between parallel walls in the presence of a transverse magnetic field (i.e. Hartmann flow), Two dimensional MHD equations, Couette flow, Transient Couette flow, Flow through a rectangular duct. Unsteady incompressible flows, Rayleigh's problem.	32
IV (Nov- Dec)	Magnetohydrostatics, equilibrium configurations, Pinch effect, force-free fields, non-existence of force free field of finite extent. General solution for a force free field. The generalized Hugoniot condition. The compressive nature of magneto hydrodynamic shocks. Mach number, Subsonic and supersonic flows. Sub and super	32

Alfvenic waves.	

		S	Semester			Ι	V		
Course Tit	le	Graph T	heory						
Course Co	de	MTMP CO	OR 15T	Credit 4			4		
Course Ou	tcome	After the course the student will have a strong background of graph theory. The students will be able to apply principles and concepts of graph theory in practical situations such as computer science, physical and engineering sciences.					- 1		
		Sch	eme of Iı	istru	ction				
Total Dura	ntion	6 Months	Class/W	eek	4	Ηοι	urs/week	4	
Instruction	n Mode	Lecture							
		Sch	eme of Ex	amir	nation				
Maximum	Score	50	Interna	1	10	Enc	l Semeste	r	40
			Course M	appi	ng				
Units		Course	Content			Lecture	e Hour (Cui	mula	ative)
I(Jan)	representatio due to Eule graph. In - da a digraph. Si Representatio by digraphs.	lirected graphs, Directed graphs, Geometrical resentation of graphs, Handshaking lemma to Euler and some basic properties of a oh. In - degree and out - degree of a vertex in graph. Simple digraph and underlying graph. oresentation of binary relations on finite sets digraphs. Reflexive, symmetric and transitive raphs. Sub graph, spanning sub graph,					16		

	induced sub graph on a vertex set and induced sub graph on an edge set. Isomorphism of graphs. Walks, paths, circuits and cycles with their properties, concatenation of two walks.	
II (Feb)	Connected and disconnected graphs. A necessary and sufficient condition for a graph to be disconnected. Component of a graph, decomposition of a graph into finite number of components, acyclic graph and cycle edge of a graph. Some properties of connected graphs. Complete graphs, disconnecting sets, bridge, separating sets, distance between two vertices of a graph. Complement of a graph, Self complementary graphs, Ramsey problem. Bipartite graph and its characterization, radius and center, Diameter, Degree sequence.	16
III(March)	Eulerian and Hamiltonian graphs: Euler trials, Euler circuits, Edge traceable graphs, Euler graphs, Euler's Theorem. Fleury's algorithm, Konigsberg bridge problem. Hamiltonian path, Hamiltonian cycle, Hamiltonian graph. A necessary condition for the existence of a Hamiltonian cycle in a connected graph. Sufficient condition for a simple connected graph to be Hamiltonian. Dirac's Theorem, Ore's Theorem and its use.	16
IV (April)	Trees and forests with their properties. Minimally connected graphs, spanning trees. weighted graphs, weight of a spanning tree and minimal spanning trees, Kruskal's algorithm for a minimal spanning tree. The shortest path problem, traveling salesman problem.	16

V (May- June)	Matrix representation of graphs, adjacency matrices of graphs and digraphs and their properties, path matrix, incidence matrices of graphs and digraphs and their properties. Cut vertices and cut edges, Vertex and edge connectivities, Blocks, Clique Number, Independence number, Matching number. Chromatic number, Chromatic polynomial, edge colouring number, planar graphs, Kuratowski's two graphs, the Euler polyhedron formula, Euler identity for connected planar graphs, detection of planarity, Statement of Kuratowski Theorem, Isomorphism properties of graphs, 5 colour theorem. Statement of 4 colour theorem, Dual of a planar Graph.	32
------------------	---	----

	Semester IV				
Course Title	Quantum Mechan	ics			
Course Code	MTMPDSE 02T	Credit	4		
Course Outcome	 Provide an opportunit mathematics, Open the gateway to possible open the gateway to p	mentals of quantum n different branches ty to recapitulate ap modern electronics	n mechanics, of mathematical physics, plication of higher pure		
	Scheme of Instruction				
Total Duration	6 Class/We	ek 4 1	Hours/week 4		

		Months				
Instructio	n Mode	Lecture				
		Sche	eme of Examin	nation		
Maximum	Score	50	Internal	10	End Semester	: 40
		(Course Mappi	ng		
Units		Course	Content		Lecture Hour (Cur	nulative)
I(Jan)	mechanics; duality; W equation; interpretation values, Ehre Schrodinger Discrete and Infinite and Simple har analytic me	Experimental background of quantum mechanics; deBroglie waves, Wave-particle duality; Wave functions and Schrodinger equation; Uncertainty relation. Statistical interpretation of wave functions, expectation values, Ehrenfest's theorem; Time-independent Schrodinger equation; Energy eigenfunction : Discrete and continuous energy eigenvalues; Infinite and finite square well problems: Parity, Simple harmonic oscillator: Algebraic and analytic methods of solution, Dirac delta function potential, free particle: wave packets.			16	
II (Feb)	Representation of observables, Dirac's bra-ket notations, mathematical set up on Hilbert space. Equations of motion: Schrodinger picture, Heisenberg picture, Interaction picture. The Hydrogen atom, angular momentum, spin. Rotation, angular momentum and unitary groups, Generators of U(n) and SU(n), representation in terms of coordinate and momenta. Clebsch- Gordan coefficients, Wigner-Eckart theorem. Space inversion, time reversal. O(4) symmetry of Hydrogen atom.			t space. picture, n, spin. groups, ation in Clebsch- neorem.	16	

III(March)	Identical particles, Bosons, Fermions; Pauli exclusion principle; Solids: Free electron gas, Band structure. Quantum statistical mechanics: Maxwell-Boltzmann, Fermi-Dirac and Bose- Einstein distributions. Blackbody spectrum.	16
IV (April)	First and second order perturbations, degenerate perturbation theory. Fine structure of Hydrogen, spinorbit coupling, Zeeman effect.	16
V (May- June)	Variational method: Rayleigh-Ritz variational principle; Hydrogen molecule ion, ground state of helium atom. Relativistic quantum mechanics: Klein-Gordon equation, plane wave solution. Dirac equation, covariant form, charged particle in electromagnetic field, equation of continuity. Dirac hole theory. Spin of the Dirac particle.	32

	Semester	IV	V	
Course Title	Mathematical Biology			
Course Code	MTMPDSE 03T	Credit	4	
Course Outcome	After completion of this course, students should be able to formulate realistic mathematical models for diverse biological phenomena and analyse them mathematically to explain the observations as obtained from experiments, clinical trials and observations. • Students would learn to mathematically predict the outcome in a situation by constructing and theoretically analysing a model. • The students will learn how to develop mathematical models			

which provide ways to design and evaluate protocols to manage and control animal populations, natural resources like forests, wildlife, fisheries, and outbreak of diseases. wildlife, fisheries, and outbreak of diseases. Scheme of Instruction 6 Class/Week 4 Hours/week 4 Months Image: Non-the second								
Instruction	Instruction Mode Lecture							
		Sche	eme of Examin	nation				
Maximum	Score	50 Internal 10			End Semester	r	40	
		(Course Mappi	ng				
Units		Course Content			Lecture Hour (Cumulative)			
I(Jan)	(Jan)A. Mathematical Models of Population Biology or Ecology1. Deterministic models. Continuous growth models. Logistic growth law. Allee effect. Bacterial growth.Harvesting. Functional responses. The spruce budworm population.					16		
II (Feb)	Models of interacting populations. The Lotka- Volterra model for competition. Competition between n species. The Lotka Volterra predator –prey model.Complexity and stability in a generalised predator-prey system.Predator-prey models with logistic growth in prey and Holling-type responses. Analysis of such models with limit cycle periodic behaviour. Mutualism.Host parasite					16		

	model.	
III(March)	Stochastic processes and stochastic models. Pure birth process, Pure death process, Birth and death process. Linear birth-death-immigration- emigration processes. Effects of both immigration and emigration on the dynamics of population.	16
IV (April)	 Biological mechanisms responsible for "time- delay". Discrete and continuous time-delay. The single species logistic model with the effect of time-delay. Stability of equilibrium position for the logistic model with general delay function. Stability of logistic model for discrete time lag. Time-delayed H-P model together with their stability analysis. Spatial population models. Metapopulations. Reaction-diffusion model. Models for animal dispersal. Biological waves. Single -species model. Fisher-Kolmogoroff equation and travelling wave solutions. 	16
V (May- June)	B. Models of Epidemics. Introduction; Some basic definitions. Simple epidemic model, General epidemic model. Kermack-	32
	McKendrik threshold theorem. Recurring epidemic model. A comparative study of these models. Control of an epidemic. Stochastic epidemic model without removal. Models having multiple infections. Epidemic	
	model with multiple infections. Stochastic epidemic model with removal. Stochastic epidemic model with removal, immigration and emigration. Special discussion on the stochastic epidemic model with carriers.	

Simple extensions of SIR model: Different case studies (i) Loss of immunity, (ii) Inclusion of immigration and emigration, (iii) Immunization. SIR endemic disease model.						
Semester IV						
Course Title	Course Title Advanced Fluid Dynamics					
Course Code	MTMPDSE	E 04T	Credit 4			
Course Outcome	 This course introduces fundamental ideas of fluid dynamics which can be further applied to problems of mechanical engineering. On completion of this course, students would be able to enter research work in Advanced Fluid Theory and Computational Fluid Dynamics (CFD). 					
	Scheme of Instruction					
Total Duration	6 Months	Class/We	ek 4	Ho	urs/week	4
Instruction Mode	Lecture					
Scheme of Examination						
Maximum Score	50	Internal	I 10 End Semester 40		r 40	
Course Mapping						
Units	nits Course Content Lecture Hour (Cumulative				mulative)	

I(Jan)	Two and Three dimensional Inviscid incompressible fluid flow : : Field equations; Irrotational motion in simply connected and multiply connected regions. Source, sink,doublet. Image systems. Motion of solid bodies in fluid. Axi-symmetrical motion, Stokes' stream function, Two dimensional motion.	16
II (Feb)	Stream function, complex potential, motion of translation and rotation of circular and elliptic cylinders in an infinite liquid, Ciculation. Kelvin's Theorem. Cyclic and acyclic motion. Superposition of motion, circle theorem, Blasius theorem, KuttaJoukowski's theorem. Surface waves, progressive waves in deep and shallow water, Stationary waves, energy and group velocity.	16
III(March)	 Viscous incompressible fluid flow: Similarity, Reynold's number, Flow between parallel plates. Couette and plane Poiseuille flow. Flow through pipes of circular, annular and elliptic cross sections. 4. Laminar Boundary layer. 	16
IV (April)	Inviscid compressible flow : Field equations, Circulation, Propagation of small disturbance. Machn number and cone, Bernoulli's equation. Irrotational motion, Velocity potential. Bernoulli's equation interms of Mach number.	16
V (May- June)	Pressure, density, temperature in terms of Mach number, Critical conditions. Steady channel flow, Area-velocity relation. Mass flow through a converging nozzle. Flow through a de- Laval nozzle. Normal shock waves, Governing equations and the solution. Viscous compressible flow: Field equation of	32