

### WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 2nd Semester Examination, 2022

# MTMACOR04T-MATHEMATICS (CC4)

### **DIFFERENTIAL EQUATION AND VECTOR CALCULUS**

Time Allotted: 2 Hours

Full Marks: 50

The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

### Answer Question No. 1 and any *five* from the rest

1. Answer any *five* questions from the following:

$$2 \times 5 = 10$$

(a) Show that the equation  $\frac{dy}{dx} = \frac{1}{y}$ , y(0) = 0 has more than one solution and indicate the possible reasons.

(b) Find all ordinary and singular points of the differential equation

(c) Solve: 
$$\frac{dx}{dt} - 7x + y = 0$$
;  $\frac{dy}{dt} - 2x - 5y = 0$ 

(d) Reduce the equation  $2x^2 \frac{d^2 y}{dx^2} + 4y^2 = x^2 \left(\frac{dy}{dx}\right)^2 + 2xy \frac{dy}{dx}$  to Euler's homogeneous equation by the substitution  $y = z^2$ .

(e) Show that if  $y = y_1$  is a solution of  $\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = 0$ , then another solution is  $y = y_2$ , where

$$y_2 = y_1 \int \frac{W(y_1, y_2)}{y_1^2} \, dx$$

*P* and *Q* being functions of *x* and the Wronskian  $W(y_1, y_2)$  satisfies the equation  $\frac{dW}{dx} + PW = 0.$ 

- (f) If  $\boldsymbol{u} = t\boldsymbol{i} t^2\boldsymbol{j} + (t-1)\boldsymbol{k}$  and  $\boldsymbol{v} = 2t^2\boldsymbol{i} + 6t\boldsymbol{k}$ , evaluate  $\int_0^2 (\boldsymbol{u} \times \boldsymbol{v}) dt$ .
- (g) Find the unit vector in the direction of the tangent at any point on the curve given by

$$\vec{r} = (a \, \cos t)\hat{i} + (a \, \sin t)\hat{j} + bt\,\hat{k}$$

#### CBCS/B.Sc./Hons./2nd Sem./MTMACOR04T/2022

(h) Find the volume of the parallelepiped whose edges are represented by

(i) Find **r** from the equation 
$$\frac{d^2r}{dt^2} = at + b$$
, given that both **r** and  $\frac{dr}{dt}$  vanish when  $t = 0$ .

a = 2i - 3j + 4k and b = i + 2j - k and c = 3i - j + 2k

- 2. (a) Find the necessary and sufficient condition that the three non-zero non-collinear 4 vectors *a*, *b* and *c* to be coplanar.
  - (b) If a and b be two non-collinear vectors such that a = c + d, where c is a vector parallel to b and d is a vector perpendicular to b, then obtain expressions for c and d in terms of a and b.
- 3. (a) Prove that the necessary and sufficient condition that a vector function f(t) has a 3 constant direction is  $f \times \frac{df}{dt} = 0$ .

(b) (i) If 
$$\mathbf{r} = (\cos nt)\mathbf{a} + (\sin nt)\mathbf{b}$$
, where *n* is a constant, show that

$$\mathbf{r} \times \frac{d\mathbf{r}}{dt} = n(\mathbf{a} \times \mathbf{b})$$
 and  $\frac{d^2\mathbf{r}}{dt^2} + n^2\mathbf{r} = 0$ 

(ii) If 
$$\mathbf{r}(t) = 5t^2\mathbf{i} + t\mathbf{j} - t^3\mathbf{k}$$
, then find the values of  $\int_{1}^{2} \left(\mathbf{r} \times \frac{d^2\mathbf{r}}{dt^2}\right) dt$ . 2

- 4. (a) Prove that:  $[a+b \ b+c \ c+a] = 2[a \ b \ c]$ 
  - (b) Show that the four points 4i + 5j + k, -j k, 3i + 9j + 4k and 4(-i + j + k) are coplanar.
- 5. (a) Reduce the equation

$$2x^{2}y\frac{d^{2}y}{dx^{2}} + ky^{2} = x^{2}\left(\frac{dy}{dx}\right)^{2} + 2xy\frac{dy}{dx}$$

to homogeneous form and hence solve it.

(b) Find the necessary and sufficient condition that the two solutions  $y_1$  and  $y_2$  of the equation 4

$$\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = 0$$

are linearly dependent.

6. (a) Solve the differential equation

$$\frac{d^2 y}{dx^2} - 9y = x + e^{2x} - \sin 2x$$

by using the method by undetermined coefficients.

4

3

4

4

#### CBCS/B.Sc./Hons./2nd Sem./MTMACOR04T/2022

(b) Show that the equation

$$x^{3}\frac{d^{3}y}{dx^{3}} - 6x\frac{dy}{dx} + 12y = 0$$

has three independent solutions of the form  $y = x^r$ , given that  $y = x^2$  is a solution.

7. Solve:

(a) 
$$(D^2 + 2D + 1)y = e^{-x} \log x$$
, (by the method of variation of parameters). 4

4

4

5

3

(b) 
$$(D^2 - 1)y = x^2 \sin x$$

- 8. (a) Solve:  $(D^2 + 4)x + y = te^{3t}$ ;  $(D^2 + 1)y 2x = \cos^2 t$ ; by operator method. 4
  - (b) Solve:  $(D^4 n^4)y = 0$  completely. Prove that if Dy = y = 0 when x = 0 and x = l, 4 then

$$y = c_1(\cos nx - \cosh nx) + c_2(\sin nx - \sinh nx)$$
 and  $(\cos nl \cosh nl) = 1$ 

9. (a) Obtain the power series solution of the differential equation

$$(1-x^2)y'' + 2xy' - y = 0$$
 about  $x = 0$ 

(b) The equation of motion of a particle is given by

$$\frac{dx}{dt} + \omega y = 0 \quad ; \quad \frac{dy}{dt} - \omega x = 0$$

Find the path of the particle.

**N.B.**: Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

\_×\_

3

WEST BENGAL STATE UNIVERSITY B.Sc. Honours 2nd Semester Examination, 2022

## MTMACOR03T-MATHEMATICS (CC3)

Time Allotted: 2 Hours

The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

#### Answer Question No. 1 and any *five* from the rest

- 1. Answer any *five* questions from the following:
  - (a) Using Archimedean property of  $\mathbb{R}$ , prove that the set of natural numbers,  $\mathbb{N}$  is unbounded above.
  - (b) Find the supremum of the set  $S = \left\{ \frac{1}{p} + \frac{1}{q} : p, q \in \mathbb{N} \right\}$ .
  - (c) For any two sets S and T in  $\mathbb{R}$ , prove that  $\overline{S \cap T} \subseteq \overline{S} \cap \overline{T}$ , where for any  $A \subseteq \mathbb{R}$ ,  $\overline{A}$  denotes the closure of A.
  - (d) If  $A = \left[\frac{1}{3}, \frac{8}{3}\right]$  and  $B = \left(1, \frac{11}{3}\right)$ , examine whether  $A \cup B$  is compact or not.

(e) Find the set of all limit points of the set  $E = \left\{ \frac{n-1}{n+1} : n \in \mathbb{N} \right\} \cup \{2, 3\}.$ 

- (f) Two sets A and B of real numbers are such that A is closed and B is compact. Prove that  $A \cap B$  is compact.
- (g) Show that  $\left(\frac{n}{n+1}\right)_n$  is a Cauchy sequence.
- (h) Apply Cauchy's root test to check the convergence of the series:

$$1 + \frac{1}{2^3} + \frac{1}{2^2} + \frac{1}{2^5} + \frac{1}{2^4} + \dots$$

- 2. (a) Let T be a bounded subset of R. If  $S = \{|x y| : x, y \in T\}$  then show that 3 sup  $S = \sup T - \inf T$ .
  - (b) Prove that the set of rational numbers is not order complete.
  - (c) If A be an uncountable set and B be a countable subset of A, then prove that A B 2 is uncountable.

2024



Full Marks: 50

 $2 \times 5 = 10$ 

1

#### CBCS/B.Sc./Hons./2nd Sem./MTMACOR03T/2022

- 3. (a) Give example of a set which is
  - (i) both open and closed,
  - (ii) neither open nor closed.

Give reasons in support of your answer.

(b) Prove that every open interval is an open set and every open set is an union of 2+2 open intervals.

2 + 2

2

3

3

2

2

4. (a) Let 
$$H = (0, 1)$$
 and  $x \in H$ . Let  $\sigma = \{I_x : x \in H\}$ , where  $I_x = \left(\frac{x}{2}, \frac{x+1}{2}\right)$ . Show 3

that  $\sigma$  is an open cover of *H* but it has no finite sub cover.

- (b) If S and T are compact sets in R then show that  $S \cup T$  is also compact.
- (c) Prove or disprove: Union of an infinite number of compact sets is compact. Give reasons in support of your answer.
- 5. (a) State Bolzano-Weierstrass theorem for the set of real numbers. Can you apply the 1+1 theorem for the set of natural numbers? Justify your answer.
  - (b) Show that the intersection of finite collection of open sets is an open set in  $\mathbb{R}$ . Give 2+1 an example to show that arbitrary intersection of open sets may not be an open set.
  - (c) Show that the set  $A = \{x \in \mathbb{R} : \cos x \neq 0\}$  is an open set, but not a closed set. 2+1

6. (a) Show that the sequence 
$$\left\{\frac{3^{2n}}{4^{3n}}\right\}$$
 is a null sequence. 2

(b) Use Sandwich theorem to prove the following limit:

$$\lim_{n \to \infty} \left[ \frac{1}{n^2 + 1} + \frac{2}{n^2 + 2} + \dots + \frac{n}{n^2 + n} \right]$$

- (c) If  $x_1 = 8$  and  $x_{n+1} = \frac{1}{2}x_n + 2$  for all  $n \in N$ , then show that the sequence  $\{x_n\}$  is monotonically decreasing and bounded. Find limit.
- 7. (a) Use Cauchy's criterion of convergence to examine the convergence of the sequence  $\{x_n\}$  where

$$x_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$$

- (b) If the *n*-th term of the sequence  $\{x_n\}$  is given by  $x_n = \frac{n}{2} \left[\frac{n}{2}\right]$ , where [x] is the greatest integer not greater than *x*, then find two subsequences of  $\{x_n\}$ , one of which converges to the upper limit and the other converges to the lower limit of  $\{x_n\}$ .
- (c) Show that every Cauchy sequence is bounded. Is the converse true? Give reasons 2+2 in support of your answer.

#### CBCS/B.Sc./Hons./2nd Sem./MTMACOR03T/2022

- 8. (a) If  $a_n > 0$  for all  $n \in \mathbb{N}$  and if the sequence  $(n^2 a_n)_n$  is convergent, show that the infinite series  $\sum a_n$  is convergent.
  - (b) For any positive number α, apply Cauchy's root test to check the convergence of 4 the series ∑a<sub>n</sub> where for all n∈ N,

2

2

$$a_n = \left(1 + \frac{1}{n^{\alpha}}\right)^{-n^{\alpha+1}}$$

(c) Use the ratio test to check the convergence of the series

$$1 + \frac{3}{2!} + \frac{5}{3!} + \frac{7}{4!} + \dots$$

- 9. (a) Let  $(u_n)_n$  be a sequence of positive terms such that the infinite series  $\sum u_n$  is 2 convergent. Use comparison test to show that  $\sum u_n^2$  is also a convergent series.
  - (b) Define absolute convergence of an infinite series of real numbers. Show that every 1+2 absolutely convergent series is convergent.
  - (c) Use Leibnitz test to show that the alternating series  $\sum (-1)^n \left[\sqrt{n^2 + 1} n\right]$  is 1+2 convergent. Show by comparison test (limit form) that this alternating series is not absolutely convergent.
    - **N.B.**: Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

-×\_